March 28, 2025

Ministry of the Environment, Conservation and Parks 3rd floor, 101 17th Street East Owen Sound, Ontario N4K 0A5

RE: 2024 Tobermory Sewage Treatment Facility Annual Sewage Performance Report (CofA #3-0046-93-006) and Municipal Sewage Collection System Performance Report (CLI-ECA #250-W601) – Municipality of Northern Bruce Peninsula

Please see attached for the 2024 Annual Sewage Performance Report prepared by the Ontario Clean Water Agency on behalf of the Municipality of Northern Bruce Peninsula for the:

• Tobermory Sewage Treatment Facility

This report was completed in accordance with the requirements set out in CofA #3-0046-93-006, issued November 23, 2017, *Condition 15* and Municipal Sewage Collection System CLI-ECA #250-W601, issued July 25, 2023, *Schedule E (4.6)*. Your receipt of this report by or before March 31, satisfies the regulatory requirements:

- CofA #3-0046-93-006 that "The Owner shall prepare and submit a performance report to the District Officer on an annual basis, and the submission shall be made no later than 90 days following the end of each calendar year."
- CLI-ECA #250-W601 that "The Owner shall prepare an annual performance report for the Authorized System that is submitted to the Director on or before March 31st of each year and covers the period from January 1st to December 31st of the preceding calendar year.

In addition, CLI-ECA #093-W601 requires that report shall be made available, on request and without charge, to members of the public who are served by the Authorized System; and made available, by June 1 of the same reporting year, to members of the public without charge by publishing the report on the Internet, if the Owner maintains a website on the Internet. We kindly ask that notification is provided once the report is posted on the Municipal website.

Lastly, the Ministry has indicated that the Municipal Collection System ECA Annual Reports can either be prepared as a separate report or as a subsection of the Annual Sewage Report for the Wastewater Treatment Facility, attached you will find one report that satisfies the reporting requirements of both Environmental Compliance Approvals.

Should you require further clarification on the information found within the Annual Sewage Performance Report, please feel free to contact me.

Sincerely,

Leb-Paul Frigault Senior Operations Manager OCWA, Georgian Highlands Region

2024 ANNUAL SEWAGE PERFORMANCE REPORT

TOBERMORY SEWAGE TREATMENT PLANT

For the period of JANUARY 1, 2024 TO DECEMBER 31, 2024

Prepared for the Municipality of Northern Bruce Peninsula by the Ontario Clean Water Agency

1. System Description

The Tobermory Sewage Works System in the Municipality of Northern Bruce Peninsula (formerly Township of St. Edmunds) comprises a wastewater treatment plant and one sewage pumping station. The wastewater generated within the collection area of Tobermory is collected into the sewer system and pumped to the wastewater treatment plant by way of a 150 mm forcemain. The wastewater treatment plant consists of two aerated cells, one storage cell, two exfiltration ponds and one overflow cell.

The wastewater treatment plant contains two (2) aerated lagoons cells each with a capacity of 10,800 m³. The aeration provided is tapered coarse bubble, diffused aeration. Aeration Cell #2 has a quiescent settling zone to permit effluent clarification. The effluent from the aeration Cell #2 can be recycled to aeration Cell #1, transferred to storage Cell #1 for winter storage, or transferred to the exfiltration Cells #2 or 3 during summer operations. The exfiltration cells have a combined minimum rated capacity of 317 m³/day, and each cell has approximately 13,750 m² of surface area. There is one (1) back-up exfiltration cell with a minimum rated capacity of 625 m³/d and approximately 21,875 m² surface area. To provide coarse bubble diffused aeration for the two aerated cells, the plant is provided with one duty and two standby blowers, each rated with a firm capacity of 193 L/sec at approximately 38 kPa.

The sewage pumping station (Little Tub Harbour Pumping Station), is located near the harbor and has two submersible pumps each rated at 18.3 L/sec capacity at 50.5 m TDH. The wet well has a normal operating volume of 5.7 m³. Due to its location near the harbour, the sewage pumping station wet well is provided with an odour control activated carbon adsorption unit with a capacity of 188.8 L/sec, for adsorbing hydrogen sulphide gas emissions from the wet well. The pumping station is also equipped with a 150-kW diesel generator set for providing emergency power for the sewage pumps. An overview of Tobermory Sewage Treatment System can be found in Table 1 and a summary of the monitoring program can be found in Table 2.

Facility Name	Tobermory Sewage Treatment System		
Facility Type	Lagoon		
Plant Classification	II WWT and II WWC		
Works Number	120001577		
Design Capacity 625 m ³ /day			
Receiving Water None			
	3-0046-93-006 (Sewage Treatment System)		
Certificate of Approval	3-0310-82-917 (Groundwater Monitoring)		
	8-1063-94-006 (Air)		

Source	Parameter	Parameter Minimum Frequency		
Influent	Flow (m ³)	Daily	Flowmeter	
Secondary Aeration	BOD ₅ , SS, TP, TKN, NH3+NH4(N),	Monthly – March, June,	External	
Cell Effluent	Nitrate, Nitrite	July, August and October	analysis	
Aeration Cells	pH, Dissolved Oxygen	Weekly (from May –		
Aeration Cens	ph, Dissolved Oxygen	September)	In-House	
	Alkalinity, Conductivity, Free	Semi-Annual in May and		
	Ammonia, Phenols, pH, Chloride,	October (for all 30 wells)		
	Sulphate, Nitrite, Magnesium, Iron,		External	
Groundwater Wells	Nitrate, Calcium, Hardness, Sodium,	Annual in August (for OW-	analysis	
	DOC, Organic Nitrogen, TKN,	6S, OW-6I, OW-6D, OW-7S,	allalysis	
	Dissolved Reactive Phosphorous ^{2a} ,	OW-9S, OW-9I, OW-9D,		
	Total P ²	OW-10S, OW-11S, OW-12S)		
	Aluminum, Barium, Cadmium,		Extornal	
Ground Water Wells	Chromium, Copper, Lead,	Every 3 years in October	External	
	Manganese, Zinc		Analysis	

Table 2. Tobermory Sewage Treatment System Monitoring Program

^{2a}Shallow Wells Only

2. Monitoring and Compliance Reports

As per Section 15(a) of C of A 3-0046-96-006, a summary of all monitoring and compliance reports submitted in the reporting period, including an overview of the success and adequacy of the sewage treatment program is required.

During the reporting period, the following reports were submitted:

• Discharge Data Report (Ministry of Environment, Conservation and Parks, MECP)

2.1 Discharge Data Report (MECP)

The Ontario Clean Water Agency (OCWA) has an agreement with the MECP to submit quarterly discharge data for all OCWA operated municipal sewage treatment facilities 45 days at the end of each quarter. Monitoring data is submitted via the Ministry of Environment Wastewater System (MEWS). The MECP has these reports stored in a shared location where MECP Inspectors can obtain and review them. There are no limits/objectives for discharge for the quarterly Discharge Data Report.

2.2 Adequacy of the Sewage Treatment Program

The current sewage treatment program provided effluent that was within the effluent objectives set out in the C of A for Suspended Solids and BOD₅ 92% of the time. Based on this evaluation, effluent recirculation flow from lagoon cell 2 to lagoon cell 1 will have to be monitored during the summer months for performance and reliability to meet our effluent objectives 100% of the time.

3. Monitoring and Analytical Data

As per Section 15(b) of C of A 3-0046-96-006, a comprehensive interpretation of all monitoring data and analytical data collected relative to the Tobermory Sewage Treatment System during the reporting period is required.

All laboratory samples are analyzed by SGS Canada Inc., which is an ISO 17025 accredited laboratory. In-house readings (pH, DO, Temperature) are conducted for monitoring purposes by licensed operators using standardized methods. Calibrations and preventative maintenance are performed on facility equipment and monitoring equipment, see Section 10 for more details.

3.1 Sampling Frequency

Both groundwater and secondary aeration cell effluent are sampled on a regular basis. The sampling types and frequencies are summarized in Table 3, Table 4, Table 5 and Table 6.

All sampling frequencies either meet or exceed the requirements set out in Section 15 of C of A 3-0046-93-006.

Table 3. Complete Groundwater Monitoring Program– Sampling Frequencies for all 30 ObservationWells

Parameter	Minimum Frequency		
Alkalinity	Semi-annually in May and October		
Conductivity	Semi-annually in May and October		
Free Ammonia	Semi-annually in May and October		
Phenols	Semi-annually in May and October		
рН	Semi-annually in May and October		
Chloride	Semi-annually in May and October		
Sulphate	Semi-annually in May and October		
Nitrite	Semi-annually in May and October		
Magnesium	Semi-annually in May and October		
Iron	Semi-annually in May and October		
Nitrate	Semi-annually in May and October		
Calcium	Semi-annually in May and October		
Hardness	Semi-annually in May and October		
Sodium	Semi-annually in May and October		
Dissolved Organic Carbon	Semi-annually in May and October		
Organic Nitrogen	Semi-annually in May and October		
Total Kjeldahl Nitrogen	Semi-annually in May and October		
Phosphorous-Dissolved Reactive ^{3a}	Semi-annually in May and October		
Total Phosphorous ^{3a}	Semi-annually in May and October		
Aluminum	Every 36 Months in October		
Barium	Every 36 Months in October		
Cadmium	Every 36 Months in October		

Parameter	Minimum Frequency
Chromium	Every 36 Months in October
Copper	Every 36 Months in October
Lead Every 36 Months in Octobe	
Manganese Every 36 Months in October	
Zinc Every 36 Months in October	

^{3a}Shallow Wells only

Table 4. Limited Groundwater Monitoring Program– Sampling Frequencies for Wells 6S, 6I, 6D, 7S, 9S,9I, 9D, 10S, 11S, 12S

Parameter	Minimum Frequency		
Alkalinity	Annually in August		
Conductivity	Annually in August		
Free Ammonia	Annually in August		
Phenols	Annually in August		
рН	Annually in August		
Chloride	Annually in August		
Sulphate	Annually in August		
Nitrite	Annually in August		
Magnesium	Annually in August		
Iron	Annually in August		
Nitrate	Annually in August		
Calcium	Annually in August		
Hardness	Annually in August		
Sodium	Annually in August		
Dissolved Organic Carbon	Annually in August		
Organic Nitrogen Annually in August			
Total Kjeldahl Nitrogen	Annually in August		
Phosphorous-Dissolved Reactive ^{4a}	Annually in August		
Total Phosphorous ^{4a}	Annually in August		

^{3a}Shallow Wells only

Table 5. Effluent (Secondary Aeration Cell) Sample Monitoring – Sampling Frequencies

Parameters	Minimum Frequency	
BOD ₅	Monthly, during March, June, July, August and October	
Total Solids	Monthly, during March, June, July, August and October	
Total Phosphorous	Monthly, during March, June, July, August and October	
Total Kjeldahl Nitrogen	Monthly, during March, June, July, August and October	
Ammonia Nitrogen	Monthly, during March, June, July, August and October	
Nitrite	Monthly, during March, June, July, August and October	
Nitrate	Monthly, during March, June, July, August and October	

Parameters	Minimum Frequency	
рН	In-house, weekly from May to September	
Dissolved Oxygen	In-house, weekly from May to September	

 Table 6.
 Sludge Haulage Sample Monitoring – Sampling Frequencies

Parameters	Minimum Frequency
Total Solids	April, where sludge haulage is expected
Total Phosphorus	April, where sludge haulage is expected
Arsenic	April, where sludge haulage is expected
Cadmium	April, where sludge haulage is expected
Cobalt	April, where sludge haulage is expected
Chromium	April, where sludge haulage is expected
Copper	April, where sludge haulage is expected
Zinc	April, where sludge haulage is expected
Free Ammonia	April, where sludge haulage is expected
Nitrate – N	April, where sludge haulage is expected
Mercury	April, where sludge haulage is expected
Molybdenum	April, where sludge haulage is expected
Nickel	April, where sludge haulage is expected
Selenium	April, where sludge haulage is expected
Lead	April, where sludge haulage is expected

3.2 Effluent Limits & Effluent Objectives

There are no effluent limits specified in C of A 3-0046-93-006 for the Tobermory Sewage Treatment System. The effluent objectives as per Section 10 of C of A 3-0046-93-006 for the Tobermory Sewage Treatment System are:

Table 7. Effluent (Secondary Aeration Cell) Objectives for Tobermory Sewage Treatment System

Effluent Parameter	Average Monthly Concentration (mg/L)
BOD ₅	50
Suspended Solids	50

3.3 Comparison of Data to Effluent Objectives

Analytical and monitoring data for the Tobermory Sewage Treatment System is housed in OCWA's data management system (WISKI). A comparison of the analytical results compared to the effluent objectives can be found in Table 8.

	BOD ₅		Suspended Solids	
	Monthly Average	Within	Monthly Average	Within
	Concentration	Objectives?	Concentration	Objectives?
	(mg/L)	(50.0 mg/L)	(mg/L)	(50.0 mg/L)
March	March 6 Yes		7	Yes
June	10	Yes	14	Yes
July	18	Yes	11	Yes
August	80	No	61	No
October	14	Yes	27	Yes

Table 8.	Comparison of Efflue	ent Objectives to 3	Sampled Effluent	(Secondary Aeration Cell)
	Companison of Ema		Sumplea Emacile	(Secondary Acration cen)

3.4 Additional Monitoring Parameters

The following parameters do not have effluent limits or objectives but are monitored on a regular basis (see Section 3.1 for sampling frequency) as required by C of A 3-0046-93-006. Table 9, Table 10 and Table 11 summarizes the monitoring data for the reporting period.

3.4.1 Flows

The Tobermory Sewage Treatment Facility was designed to treat an average summer day flow of 625 m^3/d . The total raw sewage flow including hauled septage volumes for 2024 was 61,840 m^3 with an annual average daily flow of 147 m^3/day which is 23.5% of the design capacity of the system. Total and average daily flows for 2024 have decreased in comparison with 2023. A summary of the average daily flows on a monthly basis can be found in Table 9. For more detailed information regarding flows, refer to Appendix A.

Month	Average Day Flow (m ³)
January	87
February	99
March	83
April	132
May	185
June	205
July	240
August	270
September	173
October	114
November	52
December	130

Table 9. Summary of Average Day Flow by Month, 2024

Hauled septage volumes were added to the Sewage Pump Station total flow. According to item 11(b) of C of A 3-0046-93-006, "For the purposes of this Certificate and Subsection 107 (3) of the Ontario

Water Resources Act, the introduction of sewage flows in excess of 625 m³/d for any consecutive period of time greater than one year is not approved under this Certificate". The sewage flows for 2024 were less than 625 m³/d.

3.4.2 Aeration Cell Effluent

In addition to the parameters which have effluent objectives, Total Phosphorous, Total Kjeldahl Nitrogen (TKN), Ammonia-Nitrogen, Nitrite, Nitrate, pH and DO are monitored. Please refer to Table 10 and 11 for monitoring and analytical results.

	Total Phosphorus (mg/L)	Total Kjeldahl Nitrogen (as N mg/L)	Ammonia+Ammonium (N) (mg/L)	Nitrite (mg/L as N)	Nitrate (mg/L as N)
March	5.14	7.2	4.8	<0.03	3.46
June	8.08	15.1	14.8	0.10	0.13
July	5.62	40.0	38.7	0.18	0.21
August	9.49	25.5	24.9	0.76	0.11
October	7.16	2.8	0.4	0.04	11.60

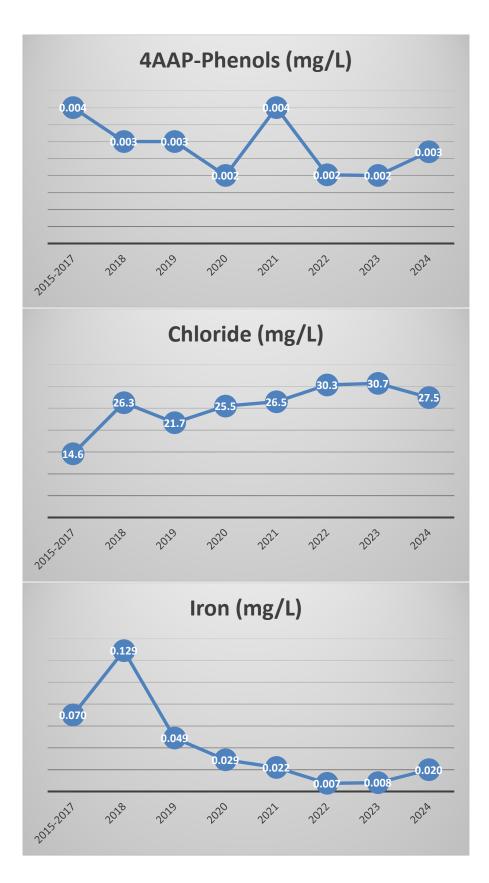
Table 10. Average Monthly Aeration Cell Effluent Monitoring Laboratory Analysis Results, 2024

Table 11. Aeration Cell In-House Monitoring -	Average Monthly	nH and DO 2024
Table 11. Aeration Cell III-House Monitoring -	Average monthly	ph anu DO, 2024

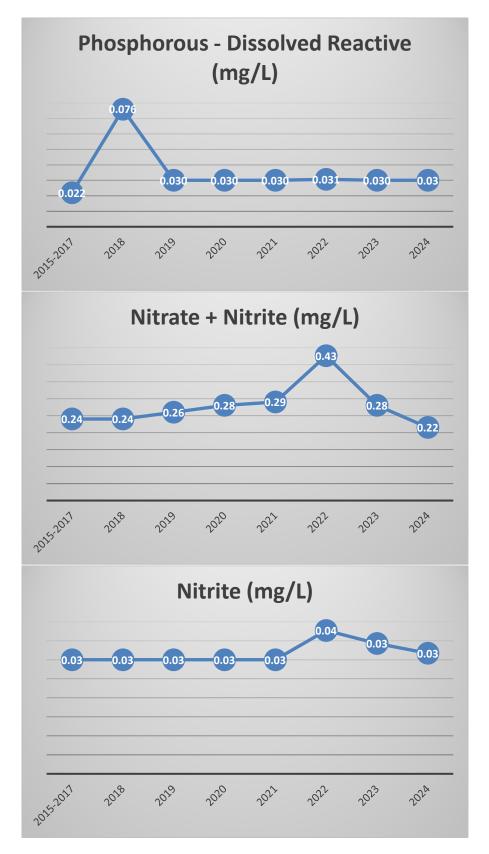
		F	эΗ		Dissolved Oxygen (mg/L)											
	Ce	ll #1	Cel	l #2	Cel	#1	Cell #2									
	Min	Max	Min	Max	Min	Max	Min	Max								
Мау	6.22	7.27	6.37	7.40	1.62	4.21	2.21	3.30								
June	6.76	7.10	6.83	7.30	0.16	4.94	1.77	2.30								
July	6.78	7.71	6.91	7.80	0.17	2.31	0.67	2.10								
August	7.08	7.81	7.30	7.86	0.26	3.34	0.36	3.62								
September	6.89	7.44	7.15	7.39	1.63	2.75	1.31	1.45								

For sewage, it is optimal if the effluent is between a pH 6.0 and 9.5. The pH of Cell#1 and Cell#2 remained within the optimal range for 100% of the reporting period. The DO range for Cell #1 and Cell #2 was between 0.16 and 4.94 mg/L in 2024 in comparison to 0.23 to 11.09 mg/L in 2023. Overall, the average DO in 2024 (1.84 mg/L) was lower than the average DO in 2023 (2.37 mg/L).

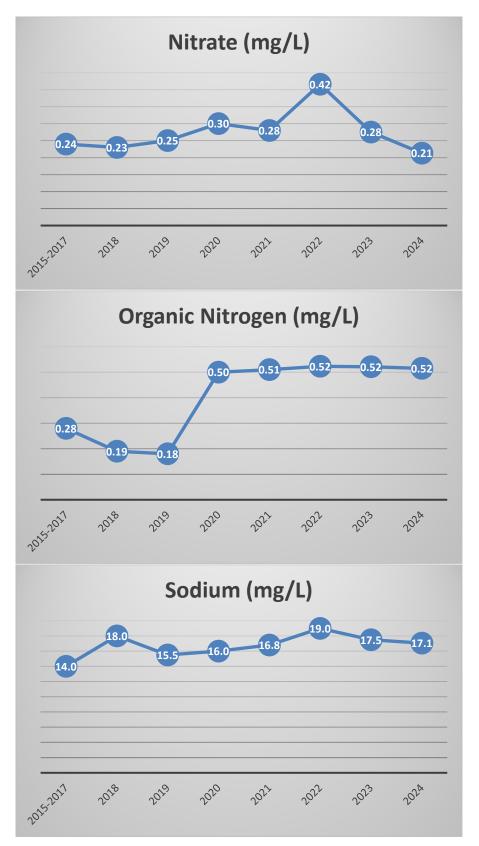
3.4.3 Groundwater Sampling Program

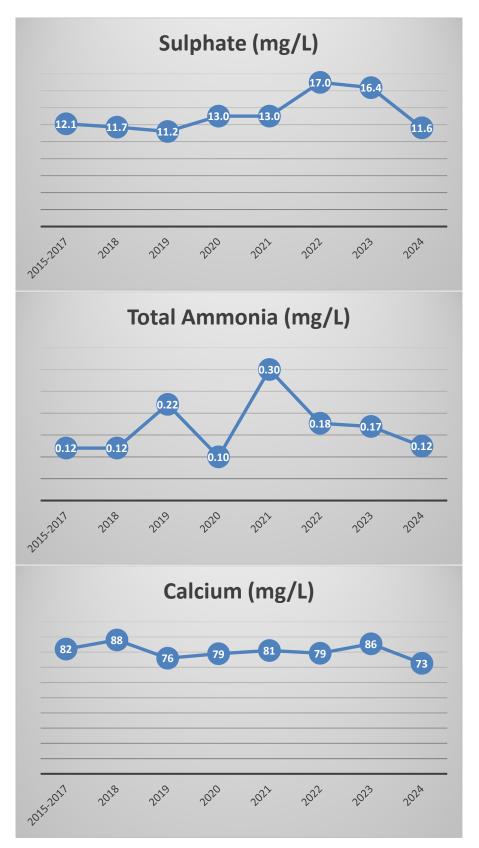

The complete and limited groundwater sampling of all on-site observation wells was completed in the Spring (May), Summer (August) and Fall (October) of 2024.

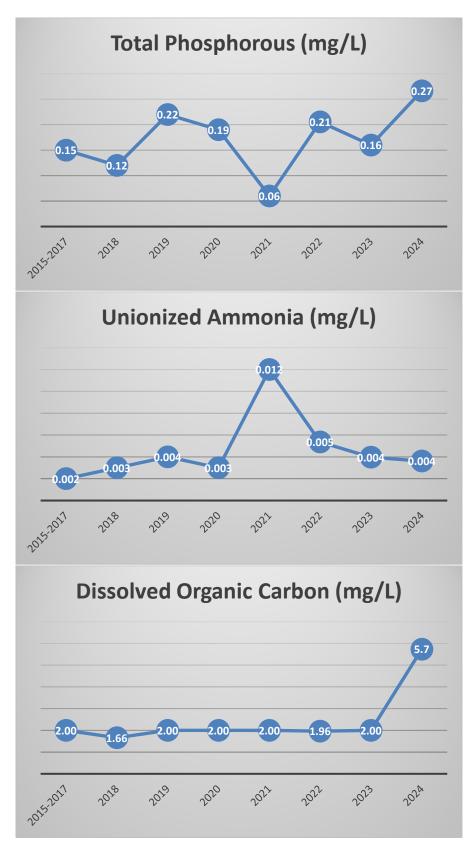
			Ave	rage			Mini	mum	Maxi	mum
	2024	2023	2022	2021	2020	2019	2024	2023	2024	2023
4AAP-Phenols (mg/L)	0.003	0.002	0.002	0.004	0.002	0.003	0.002	0.002	0.016	0.002
Alkalinity (mg/L as CaCO3)	289	287	296	296	289	283	155	204	479	482
Calcium (mg/L)	73	86	79	81	79	76	29	54	143	160
Chloride (mg/L)	27.5	30.7	30.3	26.5	25.5	21.7	1.0	1.0	180.0	180.0
Conductivity (uS/cm)	589	610	618	626	597	586	329	339	1090	1110
Dissolved Organic Carbon (mg/L)	5.7	2.0	2.0	2.0	2.0	2.0	1.0	1.0	87.0	4.0
Iron (mg/L)	0.020	0.008	0.007	0.022	0.029	0.049	0.007	0.007	0.381	0.038
Phosphorous - Dissolved Reactive (mg/L)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Magnesium (mg/L)	23.8	24.4	24.6	23.5	23.4	23.2	12.4	14.9	36.2	35.6
Nitrate + Nitrite (mg/L)	0.22	0.28	0.43	0.29	0.28	0.26	0.06	0.06	3.23	1.53
Nitrite (mg/L)	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.11	0.13
Nitrate (mg/L)	0.21	0.28	0.42	0.28	0.30	0.25	0.06	0.06	3.12	1.49
Organic Nitrogen (mg/L)	0.52	0.52	0.52	0.51	0.50	0.18	0.50	0.50	0.70	0.90
Sodium (mg/L)	17.1	17.9	19.0	16.8	16.0	15.5	0.5	0.54	104.0	80.1
Sulphate (mg/L)	11.6	16.4	17.0	13.0	13.0	11.2	2.0	2.0	44.0	42.0
Total Ammonia (mg/L)	0.12	0.17	0.18	0.30	0.10	0.22	0.10	0.10	0.40	2.80
Total Kjeldahl Nitrogen (mg/L)	0.52	0.59	0.58	0.64	0.50	0.51	0.50	0.50	0.70	3.40
Total Phosphorous (mg/L)	0.27	0.16	0.21	0.06	0.19	0.22	0.03	0.03	1.84	1.18
Hardness (dissolved) (mg/L as CaCO3)	279	314	299	298	293	285	143	215	493	547
Unionized Ammonia (mg/L)	0.004	0.004	0.005	0.012	0.003	0.004	0.001	0.001	0.019	0.059
рН	7.92	7.91	7.94	8.07	7.88	7.95	6.97	7.36	8.27	8.21


Table 12. Ground Water Sampling Program

Ground Water Sampling graphs were made for every parameter that the average changed +/- 10% please see below. Further comprehensive interpretation of groundwater monitoring data is required in order to determine proximity of sites that produced parameter changes and if relation exists with other monitoring sites.


Municipality of Northern Bruce Peninsula: Tobermory Sewage Treatment Facility C of A # 3-0046-93-006 (Issued February 24, 1993)


Municipality of Northern Bruce Peninsula: Tobermory Sewage Treatment Facility C of A # 3-0046-93-006 (Issued February 24, 1993)


Municipality of Northern Bruce Peninsula: Tobermory Sewage Treatment Facility C of A # 3-0046-93-006 (Issued February 24, 1993)

Municipality of Northern Bruce Peninsula: Tobermory Sewage Treatment Facility C of A # 3-0046-93-006 (Issued February 24, 1993)

Municipality of Northern Bruce Peninsula: Tobermory Sewage Treatment Facility C of A # 3-0046-93-006 (Issued February 24, 1993)

	Minimum (mg/L)	Average (mg/L)	Maximum (mg/L)
Aluminum	0.001	0.001	0.003
Barium	0.006	0.018	0.046
Cadmium	0.000003	0.000005	0.000012
Chromium	0.00008	0.00008	0.00014
Copper	0.001	0.001	0.003
Lead	0.00009	0.00009	0.00015
Manganese	0.00004	0.04812	0.41400
Zinc	0.002	0.002	0.004

Table 13. Ground Water Sampling Program – 36 Month Sampling (October 2024)

Refer to Appendix B for the laboratory analysis results for the groundwater sampling program.

4. Major Maintenance Activities

As per Section 15(c) of C of A 3-0046-96-006, a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanisms or thing forming part of the facility is required.

In 2024, the following major maintenance activities were conducted:

- Replaced damper actuator at Tobermory Lagoon Blower Building
- Replaced motor protection circuit and contactors at Tobermory Lagoon Blower Building
- Replaced submersible pump at Tobermory Sewage Pump Station
- Replaced outdoor and indoor lights at Lagoon Blower Building
- Replaced batteries for Tobermory Sewage Pump Station generator
- Inspected fuel tank at Tobermory Sewage Pump Station
- Repaired air exhaust fan at Tobermory Lagoon Blower Building
- Replaced DO sensor on portable analyzer

5. Operating Challenges

As per Section 15(d) of C of A 3-0046-96-006, *a description of any operating problems encountered and corrective actions taken during the reporting period* are to be identified.

During the reporting period, there were no operating problems, bypasses of raw sewage or spills at the Tobermory Sewage Treatment System or any associated pumping stations.

6. Proposed Alterations, Extensions or Replacements

As per Section 15(e) of C of A 3-0046-96-006, a summary of any proposed alteration, extension or replacement in the process or operations of the sewage treatment plant to be completed over the next reporting period which may require approval under the Ontario Water Resources Act (OWRA) is required.

The following alterations, extensions/replacements are proposed for 2024, some of which may not require approval under OWRA:

- SPS pump rebuild
- Lagoon cell sludge removal
- Generator annual inspection

7. Sludge Generation

As per Section 15(f) of C of A 3-0046-96-006, a tabulation of the volume of sludge generated in the reporting period and an outline of anticipated volumes to be generated over the next reporting period is required.

Since the facility is a sewage lagoon system, accumulated sludge is currently being stored in lagoon cell #1. The lagoons have been de-sludged once since the existing facility was constructed and approximately 800 m³ of dewatered sludge was removed in October 2004.

A volume modeling and distribution survey was performed on July 23 & 24, 2020 of both Cells 1 and 2. The biosolids levels were recorded to be 10.62 inches for Cell 1 and 6.25 inches for Cell 2. The biosolids volumes were recorded to be 519.63 m³ for Cell 1 and 391.84 m³ for Cell 2. See Appendix E for the detailed reports.

8. Sludge Handling

As per Section 15(g) of C of A 3-0046-96-006, an *outline of the sludge handing methods and disposal* areas to be utilized over the next reporting period are to be specified.

Since the facility is a sewage lagoon system, sludge levels in the lagoons are monitored regularly and disposal is arranged when sludge storage has reached its limit. No disposal areas are expected to be utilized over the next reporting period.

9. Septage Receiving Works

In 2024, approximately 7,743 m³ (1,703,300 imperial gallons) of septage was received by the Tobermory Sewage Treatment. The septage was received from various sources including:

- Bruce Peninsula Septic Service
- Scott Septic Pumping

The total monthly volume of septage received can be found in Table 14. Detailed haulage volumes can be found in Appendix C.

Month	Total Volume of Septage Received (m ³)
January	0
February	0
March	0
April	37.7

Table 14	Total Volume	of Sentage	Received in	n 2024
10016 14.		UI JEPLAge	Neceiveu II	12024

Month	Total Volume of Septage Received (m ³)
Мау	859.2
June	1,304.7
July	1,910.3
August	1,909.4
September	1,117.4
October	397.8
November	206.8
December	0
Annual Total	7,743

10. Calibration and Maintenance Procedures

As per Section 15(h) of C of A 3-0046-96-006, an evaluation of the calibration and maintenance procedures conducted on all monitoring equipment is required.

All in-house monitoring equipment is calibrated as per manufacturer's recommendations. Monitoring and metering equipment is also calibrated by a third party on an annual basis. On May 30, 2024 SCG Flowmetrix successfully calibrated the flow meter at the Tobermory Pump Station and no issues were identified. In addition to sample analysis, preventative maintenance is scheduled for all equipment at the sewage treatment plant and pumping stations on at least a monthly basis. Maintenance activities were scheduled within the work management system (WMS), upon completion, operators record their time and close off the work order. Records for calibrations/verifications can be found in Appendix D.

11. Modifications for Performance and Reliability

As per Section 15(j) of C of A 3-0046-96-006an evaluation for the need for modifications to the Tobermory Sewage Treatment Facility to improve performance and reliability and to minimize upsets and bypasses is required.

During the reporting period the Tobermory Sewage Treatment Facility met the effluent objectives 92% of the time. Based on this evaluation, effluent recirculation flow from lagoon cell 2 to lagoon cell 1 will continue to be monitored during the summer months for performance and reliability to meet our effluent objectives 100% of the time.

12. Municipal Sewage Collection System – Annual Performance Report

This report was prepared in accordance with the requirements of the Environmental Compliance Approval for a Municipal Sewage Collection Systems, Schedule E, Section 4.6.1.

Municipal Sewage Collection System ECA #	250-W601, Issue 1
Sewage Works	Northern Bruce Peninsula Sewage Collection System
Collection System Owner	The Corporation of the Municipality of Northern Bruce
	Peninsula
Reporting Period	January 1, 2024 to December 31, 2024

Is the Annual Report available to the public at no charge on a website on the Internet?

Yes

Note: As per Schedule E, Section 4.7.1 of CLI-ECA #250-W601, the annual performance report must be made available, on request and without charge, to members of the public who are served by the Authorized System; and 4.7.2 must be made available, by June 1st of the same reporting year, to members of the public without charge by publishing the report on the Internet, if the Owner maintains a website on the Internet.

Location where Annual Performance Report required under CLI-ECA #250-W601 Schedule E will be available for inspection. (CLI-ECA #250-W601, Schedule E, Section 4.7.1 & 4.7.2):

- Municipality of Northern Bruce Peninsula, 56 Lindsay Rd #5 RR 2, Lion's Head ON, NOG 1WO
- https://www.northbrucepeninsula.ca/develop/utilities/

Pursuant to Schedule E, sections 4.6.3 to 4.6.9, this Annual Performance Report shall:

- a) If applicable, include a summary of all required monitoring data along with an interpretation of the data and any conclusion drawn from the data evaluation about the need for future modifications to the Authorized System or system operations.
- b) If applicable, include a summary of any operating problems encountered and corrective actions taken.
- c) Includes a summary of all calibration, maintenance, and repairs carried out on any major structure, Equipment, apparatus, mechanism, or thing forming part of the Municipal Sewage Collection System.
- d) Include a summary of any complaints related to the Sewage Works received during the reporting period and any steps taken to address the complaints.
- e) Include a summary of all Alterations to the Authorized System within the reporting period that are authorized by this Approval including a list of Alterations that pose a Significant Drinking Water Threat.
- f) Include a summary of all Collection System Overflow(s) and Spill(s) of Sewage.
- g) Includes a summary of efforts made to reduce Collection System Overflows, Spills, STP Overflows, and/or STP Bypasses.

12.1 Description of the Works

The Sewage Works Collection System in the Municipality of Northern Bruce Peninsula is located in the communities of Tobermory and Lakewood Subdivision. For further information on the Lakewood Subdivision Sewage System, please refer to the Lakewood Subdivision Sewage System 2024 Annual Performance Report.

The Tobermory Sewage Works Collection System comprises of sewage collection mains, one sewage pumping station and one transmission sewage force main. The wastewater generated within the collection area of Tobermory is collected into the sewer system and pumped to the wastewater treatment facility by way of a 150 mm forcemain to the Tobermory Wastewater Treatment Facility.

The sewage pumping station in Authorized System include:

- Little Tub Sanitary Pumping Station located at 15 Bay St. Consists of a wetwell, a manual screen, two pumps, a metering chamber with flowmeter, an emergency storage chamber (that discharges to Little Tub Harbour) and a stand-by diesel generator. The Little Tub Sanitary Pumping Station discharges to the Tobermory Sewage Lagoon.
- Tobermory Septage Receiving Station located at the Tobermory Wastewater Treatment site. Receives residential and commercial septic tank and septage storage tanks from Tobermory area facilities that are not serviced by the sewage collection system.

12.2 Summary of Monitoring Data and Interpretation

No monitoring data was required within the municipal sewage collection system for the reporting period.

12.3 Summary of Operating Problems Encountered and Corrective Actions Taken

There were no operating problems encountered within the municipal sewage collection system for the reporting period.

12.4 Summary of Calibration, Maintenance and Repairs

All in-house monitoring equipment is calibrated as per manufacturer's recommendations. Monitoring and metering equipment is also calibrated by a third party on an annual basis. On May 30, 2024 SCG Flowmetrix successfully calibrated the flow meter at the Tobermory Pump Station and no issues were identified. In addition to sample analysis, preventative maintenance is scheduled for all equipment at the sewage treatment plant and pumping stations on at least a monthly basis. Maintenance activities were scheduled within the work management system (WMS), upon completion, operators record their time and close off the work order. All records for calibrations/ verifications can be found in Appendix D.

Major maintenance activities for the sewage pump stations can be found in section 12.6 of this report.

12.5 Community Complaints Received in Relation to the Sewage Works

During the reporting period, OCWA staff received zero (0) community complaints. Typically, the Municipality or OCWA will address complaints by verifying if there are odours in the surrounding area physically by attending the location of the complaint and recording observations and any actions taken in the logbook.

12.6 Alterations to the Authorized System

For 2024, major maintenance activities that occurred within the Authorized System include:

- Replaced submersible pump at Tobermory Sewage Pump Station
- Replaced batteries for Tobermory Sewage Pump Station generator
- Inspected fuel tank at Tobermory Sewage Pump Station

There were no alterations performed within the Authorized System that pose a Significant Drinking Water Threat.

12.7 Summary of Collection System Overflow(s) and Spill(s) of Sewage

There were no collection system overflow or spill events that occurred during the reporting period.

12.8 Efforts Made to Reduce Collection System Overflows, Spills, STP Overflows, and/or STP Bypasses.

The sewage pump stations are equipped with alarm monitoring for high flow events. Preventative maintenance procedures are in place to ensure the sewage pump stations are operating as designed and include:

- Wet well cleanouts
- Daily inspections of pump stations
- Annual cleanouts
- Pump inspections
- Alarm testing
- Generator inspection and maintenance

Appendix A

Performance Assessment Report

Performance Assessment Report Standard ECA

From 1/1/2024 to 12/31/2024

	1 / 2024	2/ 2024	3/ 2024	4/ 2024	5/ 2024	6/ 2024	7/ 2024	8/ 2024	9/ 2024	10/ 2024	11/ 2024	12/ 2024	<total></total>	<avg></avg>	<max></max>	<-Criteria->
Flows																
Raw Flow: Total - Sewage Pumping Station m ³ /d	2,682.75	2,866.00	2,573.80	3,950.89	5,731.66	6,161.56	7,444.25	8,368.48	5,190.01	3,521.00	1,565.00	4,041.67	54,097.07			0.00
Raw Flow: Avg - Sewage Pumping Station m ³ /d	86.54	98.83	83.03	131.70	184.89	205.39	240.14	269.95	173.00	113.58	52.17	130.38		147.81		625.00
Raw Flow: Max - Sewage Pumping Station m ³ /d	164.50	222.50	175.70	289.30	262.33	277.75	272.00	410.33	248.50	165.67	87.67	281.00			410.33	0.00
Raw Flow: Count - Sewage Pumping Station m³/d	31.00	29.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	366.00			0.00
Biochemical Oxygen Demand: BOD5																
Raw: Avg BOD5 - Sewage Pumping Station mg/L	0.00	0.00	78.00	0.00	0.00	108.00	127.00	116.00	0.00	74.00	0.00	0.00		100.60	127.00	0.00
Total Suspended Solids: TSS																
Raw: Avg TSS - Sewage Pumping Station mg/L	0.00	0.00	45.00	0.00	0.00	141.00	68.00	122.00	0.00	45.00	0.00	0.00		84.20	141.00	0.00
Total Phosphorus: TP																
Raw: Avg TP - Sewage Pumping Station mg/L	0.00	0.00	2.75	0.00	0.00	3.52	3.61	10.40	0.00	7.64	0.00	0.00		5.58	10.40	0.00
Nitrogen Series																
Raw: Avg TKN - Sewage Pumping Station mg/L	0.00	0.00	11.90	0.00	0.00	38.20	66.20	84.80	0.00	3.50	0.00	0.00		40.92	84.80	0.00

03/24/2025

Page 1 of 1

Appendix B

Groundwater Sampling Program Laboratory Analysis Results

0		Fa	cility Name Tol	bermory Se	wage Trea	atme	nt P	lant	t	L	abor	atory	Sectio	9"A.1	-	-		10		Samp	ole cor	ndition	upon	receipt			
			g. # 1132 ote #	2							Date	Rec'd	F	147			44	ne Re	c'd							loit	ials
		Att	ached Parameter List		No	[Yes	_				100		eceipt			3										
		Ide	ntification of Regulation un	der which the samp	le(s) fall: No Re	equirem	_	Repor	rt San	nple R	esults	Unde		-	ation t	tor Wa	stewa	ter i re	atmer		1						
			Requested Turnaround Til	me:			b App.			24-41	3 h			5-7d	х	7-	10d				Other	r		Spec	ify:		
ress			port to: Process & Complia Caroline Street	nce Tech (PCT)	Data Transfer (18 Caroline Str		PCT		_	-			: Onta		ean W	ater A	gency		_	-		de ser				SGS Lakefield Research ssion St.	Ltd
		NO	uthampton, ON H 2L0		Southampton, 0 N0H 2L0	NO					NOH	2L0	ton, O	N										Lakefi K0L 2	HO		
phor	16:	(51	9-374-5782 9) 797-3080 pung@ocwa.com		519-374-5782 (519) 797-3080 kyoung@ocwa.				-		(519)	797-25 797-3	3080	@ocw	2 000					-		-	_	705-6	52-63		
		1440	Sampl			/	Ty	ype			aprice	and sign	Inditio	(Laj O G H	0.0011		aram	eters	_	-							T
Acronym	Station Number (Short Name)		Sample Location Name	20 Date & Collec 05/22	cted .	Bottles	Alkalinity	Conductivity	Free Ammonia	Phenols	Hd	Chloride	Sulphates	Nitrite	Magnesium	lron	Nitrate	Calcium	Hardness	Sodium	DOC	Organic Nitrogen	TKN	Dissolved Reactive	Total	Snoroud Comments	
11	5S	-	,	05/23	11:15	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		
ell -	51	-		05/23	11:30	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				,
1	5D	-	F	05123	11:40	Kit	x	x	x	x	x	x	x	x	x	x	x	x	. x	x	x	x	x				
1	9D	-		05/220	8:45	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				
1	91	-		05122	08:50	Kit	x	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x				
1	9S	-	HT	05122	28:55	Kit	x	×	x	×	x	x	x	x	x	x	x	x	×	x	x	x	x	×	x	(
1	81	-		×122	79:10	1. 1. 1. 1. 1.	x	x	x	×	x	x	×	×	x	x	x	x	x	x	x	x	x		-		
1	8D	-		05/23		Kit	x	x	x	×	x	x	x	×	x	x	×	x	x	x	x	x	x		+		
	10S	-		05/23	10:30 09:57	Kit Kit	× ×	x x	x x	x	X	x	×	×	x	X	x	x	x	x	x	x	x	X	X		-
	113	-		05/23	et/2	Kit	×	×	×	x x	x	x x	x x	x x	x x	x x	x x	x x	x x	x x	x	x	x x	x	×		
1	1D	-			09:15	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	^		, 	
1	11	-	•	05/23	09'm	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		+		
1	6S	-	ſ	0512214	ion	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	(
1	6D	-		05122 10	1:10	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		T		
1	61	-		OS122 1	4:05	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				
1	57	-	+17	05/22	13:4C	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				
1	56	-		0512.2	3:25	Kit	x	x	x	x	x	x	×	x	x	x	x	x	×	x	x	x	x				
1	2S	-	Dru	15:00	2	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	×	×		
	21	-		13:05, OSP21	22	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				
	2D	-	.	13122 1	3:15	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				
1	55	•		0522	09:55	Kit	1. 1997	x	x	x	x	x	x	×	x	x	×	x	x	x	x	x	x				
	7S	-	DRY #[illy Shear 6087931	05122	9:35	Kit	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		
1	60	-		05123	0:50	Kit	×	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		-		
-	85	-	NRV HT	OS/22	0.00	Kit Kit	×	×	×	×	×	×	×	×	x x	x	×	×	×	×	×	×	×		-		
er	Vame	D	DATE	- 0	9:00	NIL	^ 6	^ 	×	^		2	ĥ	à	×	x	x	x	x	x	x	x	x	×	x		
	< A	B	illy Shear	er			Samp	Net Si		e. V	1	In	X	ly	/				evision	#6							Revised: 20
1	N	1	6087931	66360	16/3	36	0Ĉ)/	3	61	8			\mathcal{O}			-	- 4	2>	2 (60)m	L	Y	201	Hles bo ed as 110 matche Howeley	PAR
	na	-			223			l											N		1	E	10	Ne	11	ed as 110	Welt 1

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #: 120001577 Project : PO#017018

03-June-2024

 Date Rec. :
 26 May 2024

 LR Report:
 CA12872-MAY24

Copy:

#1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis	2: Analysis Start	3: Analvsis	4: Analysis	5: Well 5S-	6: Well 5I-	7: Well 5D-	8: Well 9D-	9: Well 9I-	10: Well 9S-	11: Well 8I-	12: Well 8D-
	Start Date	Time	Completed Date	Completed Time	Well 55-	Well 5I-	Well 5D-	Well 3D-	wen 51-	Well 55-	wen or-	Well oD-
Sample Date & Time					23-May-24 11:15	23-May-24 11:30	23-May-24 11:40	22-May-24 08:45	22-May-24 08:50	22-May-24 08:55	22-May-24 09:10	22-May-24 09:20
Temperature Upon Receipt [°C]					19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0
Alkalinity [mg/L as CaCO3]	28-May-24	08:18	28-May-24	15:04	232	215	206	226	253	251	272	289
Conductivity [uS/cm]	28-May-24	08:18	28-May-24	15:04	646	808	771	411	452	425	486	506
pH [No unit]	28-May-24	08:18	28-May-24	15:04	8.13	6.97	7.36	7.99	8.11	8.13	8.15	7.98
Temperature @ pH [°C]	28-May-24	08:18	28-May-24	15:04	18.8	16.5	16.7	16.8	17.7	18.9	17.6	19.0
Organic Nitrogen [mg/L]	27-May-24	16:01	30-May-24	07:35	0.6	0.6	0.7	< 0.5	< 0.5	< 0.5	0.5	0.6
Total Kjeldahl Nitrogen [as N mg/L]	27-May-24	16:01	29-May-24	12:47	0.6	0.7	0.6	< 0.5	< 0.5	< 0.5	0.5	0.5
Unionized Ammonia [mg/L as N]	27-May-24	18:00	29-May-24	12:49	< 0.003	< 0.001	< 0.001	<0.002	0.002	< 0.003	<0.003	<0.002
Ammonia+Ammonium (N) [as N mg/L]	27-May-24	18:00	28-May-24	12:40	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4AAP-Phenolics [mg/L]	28-May-24	12:56	29-May-24	08:18	< 0.002	0.014	0.013	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	28-May-24	14:32	31-May-24	10:46	3	87	43	1	< 1	2	1	< 1
Phosphorus (total) [mg/L]	30-May-24	14:49	31-May-24	14:31	0.16					0.05		
Phosphorus (dissolved reactive) [mg/L]	27-May-24	14:15	28-May-24	08:32	< 0.03					< 0.03		
Chloride [mg/L]	31-May-24	13:15	31-May-24	16:15	66	150	150	< 1	2	< 1	5	5
Sulphate [mg/L]	31-May-24	13:13	31-May-24	16:15	20	9	11	15	21	< 2	11	14
Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	0.24	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.14	0.09
Nitrate + Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	0.24	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.14	0.09
Hardness (dissolved) [mg/L as CaCO3]	30-May-24	21:06	30-May-24	12:33	238	205	232	233	249	241	284	295
Magnesium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	17.1	17.4	18.9	23.9	25.2	21.5	27.6	27.9
Calcium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	67.1	53.5	61.7	54.1	58.1	61.1	68.3	72.1
Iron (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	< 0.007	0.381	0.077	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	45.7	104	81.8	3.64	5.58	0.83	2.18	1.66
Phosphorus (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	0.014	0.093	0.006	< 0.003	< 0.003	0.003	0.004	0.003

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of His analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Works #: 120001577 Project : LR Report : PO#017018 CA12872-MAY24

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0003731218

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #: 120001577 Project : PO#017018

03-June-2024

 Date Rec. :
 26 May 2024

 LR Report:
 CA12872-MAY24

Copy:

#1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	13: Well 10S-	14: Well 11S-	15: Well 12S-	16: Well 1D-	17: Well 1I-	18: Well 6S-	19: Well 6D-
Sample Date & Time					23-May-24 10:30	23-May-24 09:55	23-May-24 09:30	23-May-24 09:15	23-May-24 09:00	22-May-24 14:00	22-May-24 14:10
Temperature Upon Receipt [°C]					19.0	19.0	19.0	19.0	19.0	19.0	19.0
Alkalinity [mg/L as CaCO3]	28-May-24	08:18	28-May-24	15:04	230	328	266	278	374	294	276
Conductivity [uS/cm]	28-May-24	08:18	28-May-24	15:04	329	561	890	487	635	500	479
pH [No unit]	28-May-24	08:18	28-May-24	15:04	8.16	8.02	7.99	8.15	7.96	8.11	8.03
Temperature @ pH [°C]	28-May-24	08:18	28-May-24	15:04	17.4	18.8	18.0	18.5	18.5	18.9	18.4
Organic Nitrogen [mg/L]	27-May-24	16:01	30-May-24	07:35	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	27-May-24	16:01	29-May-24	12:47	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5
Unionized Ammonia [mg/L as N]	27-May-24	18:00	29-May-24	12:49	< 0.003	<0.002	<0.002	<0.003	<0.002	<0.003	<0.002
Ammonia+Ammonium (N) [as N mg/L]	27-May-24	18:00	28-May-24	12:40	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4AAP-Phenolics [mg/L]	28-May-24	12:56	29-May-24	08:18	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	28-May-24	14:32	31-May-24	10:46	2	2	3	1	2	2	1
Phosphorus (total) [mg/L]	30-May-24	14:49	31-May-24	14:31	0.72	< 0.03	0.05			0.04	
Phosphorus (dissolved reactive) [mg/L]	27-May-24	14:15	28-May-24	08:32	< 0.03	< 0.03	< 0.03			< 0.03	
Chloride [mg/L]	31-May-24	13:15	31-May-24	16:15	< 1	1	160	3	< 1	< 1	1
Sulphate [mg/L]	31-May-24	13:13	31-May-24	16:15	18	13	23	10	4	< 2	7
Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.98	0.31	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.98	0.31	< 0.06	< 0.06	< 0.06	< 0.06
Hardness (dissolved) [mg/L as CaCO3]	30-May-24	21:06	30-May-24	12:33	213	322	295	241	353	300	258
Magnesium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	20.5	28.4	19.7	23.8	28.6	35.2	25.2
Calcium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	51.4	82.4	85.6	57.5	94.0	62.1	61.7
Iron (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	2.97	1.53	79.3	20.3	3.27	0.63	4.99
Phosphorus (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	0.004	0.003	0.003	0.029	0.324	< 0.003	0.009

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Works #: 120001577 Project : LR Report : PO#017018 CA12872-MAY24

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0003731223

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #: 120001577 Project : PO#017018

03-June-2024

 Date Rec. :
 26 May 2024

 LR Report:
 CA12872-MAY24

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	20: Well 6l-	21: Well 57-	22: Well 56-	24: Well 2I-	25: Well 2D-	26: Well 55-
Sample Date & Time					22-May-24 14:05	22-May-24 13:40	22-May-24 13:25	22-May-24 13:05	22-May-24 13:15	22-May-24 09:55
Temperature Upon Receipt [°C]					19.0	19.0	19.0	19.0	19.0	19.0
Alkalinity [mg/L as CaCO3]	28-May-24	08:18	28-May-24	15:04	348	476	263	383	242	370
Conductivity [uS/cm]	28-May-24	08:18	28-May-24	15:04	571	791	447	634	436	617
pH [No unit]	28-May-24	08:18	28-May-24	15:04	7.92	7.76	8.00	7.93	8.07	7.71
Temperature @ pH [°C]	28-May-24	08:18	28-May-24	15:04	18.7	17.5	17.3	17.0	17.2	19.0
Organic Nitrogen [mg/L]	27-May-24	16:01	30-May-24	07:35	0.6	0.6	< 0.5	0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	27-May-24	16:01	29-May-24	12:47	0.7	0.6	< 0.5	0.5	< 0.5	< 0.5
Unionized Ammonia [mg/L as N]	27-May-24	18:00	29-May-24	12:49	0.003	< 0.001	< 0.002	<0.002	<0.002	< 0.001
Ammonia+Ammonium (N) [as N mg/L]	27-May-24	18:00	28-May-24	12:40	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4AAP-Phenolics [mg/L]	28-May-24	12:56	29-May-24	08:18	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	28-May-24	14:32	31-May-24	10:46	2	2	2	2	1	12
Phosphorus (total) [mg/L]	30-May-24	14:49	31-May-24	14:31						
Phosphorus (dissolved reactive) [mg/L]	27-May-24	14:15	28-May-24	08:32						
Chloride [mg/L]	31-May-24	13:15	31-May-24	16:15	2	< 1	< 1	< 1	< 1	< 1
Sulphate [mg/L]	31-May-24	13:13	31-May-24	16:15	8	5	< 2	5	17	< 2
Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.49	< 0.06	< 0.06	< 0.06	< 0.06
Nitrate + Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.49	< 0.06	< 0.06	< 0.06	< 0.06
Hardness (dissolved) [mg/L as CaCO3]	30-May-24	21:06	30-May-24	12:33	321	476	257	370	226	353
Magnesium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	32.2	36.2	17.6	31.4	22.5	22.1
Calcium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	75.7	131	73.9	96.3	53.3	105
Iron (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	< 0.007	0.014	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	2.48	0.88	0.49	2.23	15.1	0.97
Phosphorus (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	0.011	< 0.003	< 0.003	0.055	0.060	< 0.003

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Works #: 120001577 Project : LR Report : PO#017018 CA12872-MAY24

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0003731227

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #: 120001577 Project : PO#017018

03-June-2024

 Date Rec. :
 26 May 2024

 LR Report:
 CA12872-MAY24

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: 2: Analysis Analysis Sta Start Date Time		3: Analysis Completed Date	4: Analysis Completed Time	27: Well 7S-	28: Well 60-	29: Well 61-
Sample Date & Time					22-May-24 09:35	23-May-24 10:50	23-May-24 11:00
Temperature Upon Receipt [°C]					19.0	19.0	19.0
Alkalinity [mg/L as CaCO3]	28-May-24	08:18	28-May-24	15:04	250	300	276
Conductivity [uS/cm]	28-May-24	08:18	28-May-24	15:04	431	900	702
pH [No unit]	28-May-24	08:18	28-May-24	15:04	8.14	7.80	8.16
Temperature @ pH [°C]	28-May-24	08:18	28-May-24	15:04	19.4	18.9	18.9
Organic Nitrogen [mg/L]	27-May-24	16:01	30-May-24	07:35	< 0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	27-May-24	16:01	29-May-24	12:47	< 0.5	< 0.5	< 0.5
Unionized Ammonia [mg/L as N]	27-May-24	18:00	29-May-24	12:49	< 0.003	< 0.001	<0.003
Ammonia+Ammonium (N) [as N mg/L]	27-May-24	18:00	28-May-24	12:40	< 0.1	< 0.1	< 0.1
4AAP-Phenolics [mg/L]	28-May-24	12:56	29-May-24	08:18	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	28-May-24	14:32	31-May-24	10:46	3	2	1
Phosphorus (total) [mg/L]	30-May-24	14:49	31-May-24	14:31	0.09		
Phosphorus (dissolved reactive) [mg/L]	27-May-24	14:15	28-May-24	08:32	< 0.03		
Chloride [mg/L]	31-May-24	13:15	31-May-24	16:15	< 1	140	57
Sulphate [mg/L]	31-May-24	13:13	31-May-24	16:15	5	31	26
Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.91	0.11
Nitrate + Nitrite (as N) [mg/L]	28-May-24	12:42	30-May-24	07:35	< 0.06	0.91	0.11
Hardness (dissolved) [mg/L as CaCO3]	30-May-24	21:06	30-May-24	12:33	243	320	316
Magnesium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	19.7	23.4	27.3
Calcium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	64.9	89.5	81.5
Iron (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	< 0.007	0.007	< 0.007
Sodium (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	0.79	70.3	31.1
Phosphorus (dissolved) [mg/L]	30-May-24	21:06	30-May-24	12:33	0.003	0.052	0.032

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Works #: 120001577 Project : LR Report : PO#017018 CA12872-MAY24

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0003731232

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

-	7	Wa	aterworks/Project #	120001577		1.20		1.58%	C of	CLI	MS I	No:	H	UQ	1	l	5 C	J	\cup	-	_	P				
"ALCOLOGY	p.	Fa		ermory Sewage Tre	eatme	ent F	Plan	It	L	abora	tory s	Sectio	n	2					Samp	le cor	ndition	upon	receipt			
		<u> </u>	g. # 1132						1	Date I	Rec'd:	٨	HG (19	2026	Tir	ne Re	c'd								
			ote # ached Parameter List	No		Yes			Tom	norati	uro Lir	oon Re	acoint	N.	7	3.0									Initials	- 0 <u>-</u>
				der which the sample(s) fall: N	o Requi		t to Re	enort 9				7			-	_	owate	r Trea	tment							
					ortequi	emen		sport	oump		Suno c	Jinder		cgulat		1 1 1 1 1 1	cmate	i iica								
		Requested Turnaround Time:				**La b			24-48	h			5-7d	х	7-1	10d				Othe	r		Specit	fy:		
		Por	port to: Process & Complia	nce Technician (PCT)	Data Tr		Cont	act: P	СТ			Invoid	o To:	Onta		an W/s	ater Ac	IODCV	yk j			Labo	ratory: S	GSLa	kefield	
dress:		18 Caroline Street				oline St	treet	aci. r	01			18 Ca	roline	Stree	t		aler Ag	ency				185 (Concessi	on St.	Relield	
		Southampton, ON N0H 2L0				mpton, .0	ON					South NOH 2		on, ON								Lake K0L 2	field, ON 2H0			
elephon	e:					4-5782							797-2 797-3						a de				652-2000 652-6365			
ax: mail:			ung@ocwa.com		(519) 7 kyoung					h				ands(Docwa	a.com							greenla		is.com	
	1		Sample			Ту	pe								F	Param	eters									T
Station Acronym	Station Number (Short Name)		Sample Location Name	Date & Time Collected	Bottles	Alkalinity	Conductivity	Free Ammonia	Phenols	Hd	Chloride	Sulphates	Nitrite	Magnesium	Iron	Nitrate	Calcium	Hardness	Sodium	DOC	Organic Nitrogen	TKN	Dissolved Reactive Phosphorus	Total hosphorous	Comments	Upload to
Vell01	OW6-S	-	Dry	08:50 08/08/	, Kit	x	x	х	х	х	x	х	х	Х	х	x	x	х	х	х	x	x	x	X	Dry	Yes No
Vell03	OW6-I	-	•	08:55 08/08/2	17.1	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	x	x				Yes No
/ell02	OW6-D	-		09:06 08:08/2	Kit	х	х	х	х	х	х	х	х	X	х	x	х	х	х	х	x	x	x	х		Yes No
/ell25	OW7-S	-	DRY	13:15 08/07/2	4 ^{Kit}	х	х	х	х	х	х	х	х	х	х	x	X	х	х	х	x	x	x	x	Dry	Yes No
vell18	OW9-S	-		13:30 08/07/2	₽ ^{Kit}	х	х	x	х	х	х	х	х	х	х	x	х	х	х	х	х	х	x	x		Yes No
Vell19	OW9-I	-		13:35 08/07/2	, Kit	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	x	х				Yes No
Vell20	OW9-D	-	*	13:40 08/07/2	4 ^{Kit}	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х			1. 	Yes No
/ell23	OW10-S	-		69:40 08/08/2	Kit	х	х	x	х	х	х	x	х	х	х	x	x	х	х	х	x	x	x	x		Yes No
Vell24	OW11-S	-		09:30 08/08/24	Kit	х	х	x	х	х	x	x	х	х	x	x	x	х	х	х	x	x	x	x		Yes No
Vell10	OW12-S	-		09:10 08/08/24	Kit	х	х	х	х	х	х	х	x	х	х	x	х	х	х	х	X	х	x	x		Yes No
ampler N	Name: T	Ś	Ily Sha	wer		Samp	ler Sig	gnatur	re:	4	R	it	H	W												

608487599045 HC RTN NP 09:45

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #: 120001577 Project : PO#017018

20-August-2024

Date Rec. :09 August 2024LR Report:CA13510-AUG24

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: Well03-OW6-I (Well 3)	6: Well02-OW6-D (Well 2)	7: Well18-OW9-S (Well 18)	8: Well19-OW9-I (Well 19)	9: Well20-OW9-D (Well 20)	10: Well23-OW10-S (Well 23)	11: Well24-OW11-S (Well 24)	12: Well10-OW12-S (Well 10)
Sample Date & Time					08-Aug-24 08:55	08-Aug-24 09:00	07-Aug-24 13:30	07-Aug-24 13:35	07-Aug-24 13:40	08-Aug-24 09:40	08-Aug-24 09:30	08-Aug-24 09:10
Temperature Upon Receipt [°C]					22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Alkalinity [mg/L as CaCO3]	09-Aug-24	15:41	13-Aug-24	09:41	328	279	310	261	238	220	349	321
Conductivity [uS/cm]	09-Aug-24	15:41	13-Aug-24	09:41	591	490	521	492	441	396	613	993
pH [No unit]	09-Aug-24	15:41	13-Aug-24	09:41	7.96	8.04	8.08	8.11	8.09	8.12	8.01	7.96
Temperature @ pH [°C]	09-Aug-24	15:41	13-Aug-24	09:41	20.8	22.4	22.5	22.0	22.4	20.5	22.5	22.5
Organic Nitrogen [mg/L]	13-Aug-24	16:47	16-Aug-24	16:38	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	13-Aug-24	16:47	14-Aug-24	13:36	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Unionized Ammonia [mg/L as N]	15-Aug-24	19:29	16-Aug-24	11:18	0.007	0.014	0.005	0.009	0.007	0.008	0.008	0.004
Ammonia+Ammonium (N) [as N mg/L]	15-Aug-24	19:29	16-Aug-24	11:18	0.2	0.3	< 0.1	0.2	0.1	0.2	0.2	0.1
4AAP-Phenolics [mg/L]	12-Aug-24	12:52	13-Aug-24	08:35	< 0.002	< 0.002	0.002	< 0.002	< 0.002	< 0.002	0.002	< 0.002
Dissolved Organic Carbon [mg/L]	12-Aug-24	13:19	14-Aug-24	10:16	1	1	1	< 1	< 1	2	1	3
Phosphorus (total) [mg/L]	13-Aug-24	15:09	14-Aug-24	10:16		0.09	0.04			0.94	< 0.03	< 0.03
Phosphorus (dissolved reactive) [mg/L]	12-Aug-24	13:57	14-Aug-24	08:58		< 0.03	< 0.03			< 0.03	< 0.03	< 0.03
Chloride [mg/L]	14-Aug-24	10:57	15-Aug-24	13:36	2	1	< 1	2	< 1	< 1	1	150
Sulphate [mg/L]	14-Aug-24	10:56	15-Aug-24	13:36	9	6	< 2	20	14	14	12	20
Nitrite (as N) [mg/L]	13-Aug-24	17:26	16-Aug-24	09:50	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	13-Aug-24	17:26	16-Aug-24	09:50	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.84	0.18
Nitrate + Nitrite (as N) [mg/L]	13-Aug-24	17:26	16-Aug-24	09:50	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.84	0.18
Hardness (dissolved) [mg/L as CaCO3]	12-Aug-24	18:38	13-Aug-24	11:04	314	250	275	250	224	207	323	304
Magnesium (dissolved) [mg/L]	12-Aug-24	18:38	13-Aug-24	11:04	31.6	25.2	24.8	24.8	23.1	20.2	28.3	20.5
Calcium (dissolved) [mg/L]	12-Aug-24	18:38	13-Aug-24	11:04	73.6	58.5	69.4	59.1	51.5	49.4	82.8	88.1
Iron (dissolved) [mg/L]	12-Aug-24	18:38	13-Aug-24	11:04	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	12-Aug-24	18:38	13-Aug-24	11:04	2.52	6.51	0.92	5.36	3.64	2.98	1.36	77.4
Phosphorus (dissolved) [mg/L]	12-Aug-24	18:38	13-Aug-24	11:04	< 0.003	0.007	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

 Works #:
 120001577

 Project :
 PO#017018

 LR Report :
 CA13510-AUG24

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0003825462

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of His analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

				0.	24	2	01	14							1/2
Ontario	Clean Water Agen	су -	Request for Laboratory Services an	d CHAIN OF CUSTODY - SE	WAGE (3 YEARS	. осто	BER)							Page 1 of 1
		_	aterworks/Project # 12000	1577			.,		C of	C LIMS	No:	\bigcirc	-t-	- 15168	
			acility Name Tobermory rg. # 1132	Sewage Treatme	nt Pla	int			Labor	atory Se		Semple	e Gondiție	on Upon Recepit	SR
		Q	uote #						+	ate Reci			-	initials_	<u> </u>
			tached Parameter List	No	Yes ement to	Report S	ample R	esults Ur		Tempera Regulati			_	-×3.	
						**Lab				7		7		7	
		L	Requested Turnaround Time:			App.		24-48	L		X	5-7d		Other Specify:	
Address:		18	eport to: Process & Compliance Techni Caroline Street outhampton, ON	cian (PCT) Data Transfe 18 Caroline S Southampton	treet	: PCT			18 Ca	e To: On roline Stre	eet	in Water	Agency	185 Concession St.	Research Ltd
Telephor	ie:	NC	9-374-5782	N0H 2L0				····	NOH 2	ampton, (110 197-2561	N			Lakefield, ON K0L 2H0 705-652-2000	
Fax: Email:		(5 KY0	19) 797-3080 pung@ocwa.com	(519) 797-30 kyaung@acw						797-3080 thighland	s@ocwa	com		705-652-6365	
	1	1	Sample		1	Т	ype		1	Para	meters	1		-	
Station Acronym	Station Number (Short Name)		Sample Location Name	Date & Time Collected	Bottles	Aluminum	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Zinc	Comments	Upload to OCWA
Well04	OW5-S	-	16-10 -24	14:55	Kit	x	x	x	x	x	x	x	x	DRY	Yes X
Well05	OW5-I	-	113:4 16-10-24	14:45	Kit	x	x	x	×	x	x	x	x		Yes X
Well06	OW5-D	-	16-10-24	15:00	Kit	x	x	x	x	×	x	x	×		Yes X
Well20	OW9-D	-	15-10-24	12:40	Kit	x	x	x	×	x	x	x	x		Yes X
Well19	OW9-I	-	15-1024	12:45	Kit	x	×	x	×	x	x	x	x		Yes X
Well18	OW9-S	-	15-10-24	12:50	Kit	x	×	x	x	x	x	x	x		Yes X
Well16	OW8-I	-	15-10-24	13:10	Kit	x	x	x	x	x	x	×	x		Yes X No
Well17	OW8-D	-	15-10 24	13:15	Kit	x	x	x	x	x	x	×	x		Yes X No
Well23	OW10-S	-	16-10-24	14:20	Kit	x	x	x	x	x	x	x	x	and the second second as	Yes X No
Well24	OW11-S	-	16-10-24	14:10	Kit	x	×	x	×	x	x	x	x		Yes X No
Well10	OW12-S	-	16-10-24	14:00	Kit	x	x	x	x	x	x	x	x		
Well22	OW1-D	-	16-10-24	13:50	Kit	x	x	×	x	x	x	x	x		Yes X No 🗌
Well21	OW1-I	-	16-10-24	13:40	Kit	x	x	x	×	x	x	x	x		Yes X No
Well01	OW6-S	-	16-10-24	13:15	Kit	x	x	×	x	x	×	x	x	DRY	Yes X No
Well03	OW6-I	-	16-10-24	13:20	Kit	x	×	x	x	×	x	x	x		
Well02	OW6-D	-	16-10-24	13:30	Kit	х	x	x	x	x	x	×	x		Yes X No
Well13	OW57	-	16-10-24	12:50	Kit	x	x	x	x	x	x	х	х		Yes X No
Well12	OW56	-	15-10-24	14:00	Kit	x	x	x	x	x	x	x	x		Yes X No
Well07	OW2-S	-	13-10-24	13:30	Kit	x	x	x	x	x	x	х	x	DRY	Yes X No
Well08	OW2-I	-	15.10-24	13:35	Kit	×	x	x	x	x	x	x	x		Yes X No
Well09	OW2-D	-	15-10-24	13:45	Kit	x	x	x	x	x	x	x	x		Yes X No
Well11	OW55	-	10-10-24	12:40	Kit	x	x	x	x	x	x	x	x		Yes X
Well25	OW7-S	-		13:20	Kit	x	x	х	x	x	x	x	x	DRY	Yes 🔀 No 🗌
Well14	OW60	-	16-10-24	1\$:30	Kit	x	x	x	x	x	x	×	×	14:30	Yes X No
Well15	OW61	-	16-10-24	14:35	Kit	x	×	x	x	x	x	x	x		Yes X No
Well26	OW8-S	-	15-10-24	13:65	Kit	×	x	×	x	x	×	x	x	DRY	Yes X No
Sampler Na	ame:		Billy	Sheaver	8	Sampler	Signatur	e:		B	Ð,	Revisio	on #8		nised: 2024.07.10

Oct 2024

p# 608793683897 608793683905

HCRTN

10:30

SR.

2/2

2		Waterworks/Project # 120001577 Facility Name Tobermory Sewage Treatmer							C of	CL	IMS I	No:														
-					eatme	nt P	lant					Sectio	n						Samp	le con	dition	upon	receipt			
			g. # 1132							Date	Rec'd	:				Tir	ne Re	c'd .								
			ote # iched Parameter List	No		Yes			Tem	perat	ure U	pon Re	eceipt			°C									Initials	
				ler which the sample(s) fall: No	Requirem		Report	Sam							or Was		er Tre	atmen	t							
			Requested Turnaround Tin	ne:		**La			24-48	2 h		1	5-7d	x	7-1					Other			Snoo	6		
						b			24-40									l		Other			Spec			
ddress:		18 0	oort to: Process & Complian Caroline Street	18 Caroline	Street	PCT				18 C	arolin	e Stree	et	ean W	ater A	gency							185 C	onces	SGS Lakefield Research Ltd	
elephon	10 ⁻	NOF	Ithampton, ON <u>1 2L0</u> -374-5782	Southampto N0H 2L0						NOH	2L0	ton, Ol	N										Lakefi K0L 2	HO		
ax: mail:		(519	-374-3782 9) 797-3080 ung@ocwa.com	519-374-57 (519) 797-30 kyoung@oo	080			_	_	(519)	797-2	3080	തരവ	/a.com									705-6	52-636		
		- Collector	Sample	<u> mittinide.es</u>		Ту	pe			apric	Jorrigi	nunuo	10,001	4.0011		Param	eters						<u>banno</u>	groom		
Station Acronym	Station Number (Short Name)		Sample Location Name	Date & Time Collected	Bottles	Alkalinity	Conductivity	Free Ammonia	Phenols	рН	Chloride	Sulphates	Nitrite	Magnesium	Iron	Nitrate	Calcium	Hardness	Sodium	DOC	Organic Nitrogen	TKN	Dissolved Reactive	Total	Comments	Upload to
Vell04	OW5-S	-	16-Oct-24	14:55	Kit	×	x	x	x	x	x	×	x	×	x	×	×	x	x	x	x	x	×	×	DRY	Yes
Vell05	OW5-I	-	16-Oct-24	14:35	Kit	×	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x		1		Yes
Vell06	OW5-D	-	16-Oct-24	15:00	Kit	×	x	x	x	x	x	x	x	×	x	x	x	x	x	x	×	x				Yes No
Vell20	OW9-D	-	15-Oct-24	12:40	Kit	×	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				Yes No
Vell19	OW9-I	-	15-Oct-24	12:45	Kit	x	x	x	x	x	x	×	×	x	x	x	x	x	x	x	x	x				Yes No
Vell18	OW9-S	-	15-Oct-24	12:50	Kit	×	x	x	×	x	x	×	×	×	x	x	x	x	x	x	x	×	x	×		Yes No
Vell16	OW8-I	-	15-Oct-24	13:10	Kit	x	×	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x				Yes
Vell17	OW8-D	-	15-Oct-24	13:15	Kit	×	x	x	×	×	x	×	×	×	x	x	x	x	x	x	x	×				Yes
Vell23	OW10-S	-	16-Oct-24	14:20	Kit	x	x	x	x	x	x	×	×	×	x	x	x	x	x	x	x	x	x	×		Yes No
	OW11-S	$\left \right $	16-Oct-24	14:10	Kit	×	x	x	x	x	×	×	×	x	x	×	x	x	x	x	x	x	x	×		Yes No
	OW12-S	-	16-Oct-24	14:00	Kit	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	×	×	×	×		Yes No
Vell22		-	16-Oct-24	13:50	Kit	x	×	×	x	x	x	×	x	×	x	x	x	x	x	x	×	×		_		Yes
Vell21	OW1-I	-	16-Oct-24	13:40	Kit	×	×	×	x	×	×	x	x	×	x	x	x	x	x	x	x	x		_		Yes
Vell01	OW6-S	-	16-Oct-24	13:15	Kit	×	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	×	x	×	DRY	Yes
Vell03		-	16-Oct-24	13:20	Kit	×	×	x	x	×	×	x	x	×	x	x	x	x	x	x	x	×				Yes No
Vell02			16-Oct-24	13:30	Kit	×	×	x	×	x	×	x	x	×	x	x	x	×	x	x	×	x				Yes No
Vell13		-	16-Oct-24	12:50	Kit	×	x	x	x	x	x	×	x	×	x	x	x	x	x	x	x	×				Yes No
Vell12		-	15-Oct-24	14:00	Kit	×	×	x	×	x	×	×	x	×	x	x	x	×	x	x	×	×				Yes No
Vell07		-	15-Oct-24	13:30	Kit	×	×	x	x	x	x	×	x	×	x	x	x	×	x	x	×	x	×	×	DRY	Yes No Yes
Vell08		-	15-Oct-24	13:35	Kit	×	×	x	×	x	x	×	x	×	x	x	x	×	x	x	×	x		_		No
Vell09		-	15-Oct-24	13:45	Kit	×	×	×	×	x	×	×	×	×	x	x	x	×	x	x	×	x				Yes No Yes
Vell11		-	16-Oct-24	12:40	Kit	×	×	×	×	×	x	×	×	×	x	x	x	×	×	x	×	x				No
Vell25 Vell14		-	16-Oct-24	13:20	Kit	×	x	×	x	x	x	×	×	×	x	×	×	×	x	×	×	×	×	×	DRY	No
Vell14		-	16-Oct-24	14:30	Kit	×	×	×	x	x	x	×	×	×	x	×	x	×	x	x	×	×				No
		-	16-Oct-24	14:35	Kit	×	×	x	x	x	x	x	×	×	x	x	x	×	x	x	×	×			and the second second	No
velizo	OW8-S	[-]	16-Oct-24	13:05	Kit	×	×	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x	x	×	DRY	No

Revision #7

Revised: 2024.07.19

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #:120001577Project :PO#017018

24-March-2025

 Date Rec. :
 18 October 2024

 LR Report:
 CA15168-OCT24

#2

Copy:

CERTIFICATE OF ANALYSIS Final Report - Revised

Analysis	1: Analysis	2: Analysis Start	3: Analysis	4: Analysis	5: Well 5I-OW5-I	6: Well 5D-OW5-D	7: Well 9D-OW9-D	8: Well 9I-OW9-I	9: Well 9S-OW9-S	10: Well 8I-OW8-I	11: Well 8D-OW8-D	12: Well 10S-OW10-S
	Start Date	Time	Completed Date	Completed Time	(Well 5)	(Well 6)	(Well 20)	(Well 19)	(Well 18)	(Well 16)	(Well 17)	(Well 23)
Sample Date & Time					16-Oct-24 14:45	16-Oct-24 15:00	15-Oct-24 12:40	15-Oct-24 12:45	15-Oct-24 12:50	15-Oct-24 13:10	15-Oct-24 13:15	16-Oct-24 14:20
Temperature Upon Receipt [°C]					14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Alkalinity [mg/L as CaCO3]	21-Oct-24	08:19	22-Oct-24	12:46	185	203	224	241	285	310	270	253
Conductivity [uS/cm]	21-Oct-24	08:19	22-Oct-24	12:46	474	848	436	476	546	498	513	383
pH [No unit]	21-Oct-24	08:19	22-Oct-24	12:46	8.02	7.62	8.27	8.03	8.07	8.16	8.09	8.11
Temperature @ pH [°C]	21-Oct-24	08:19	22-Oct-24	12:46	20.3	20.4	22.7	21.0	20.4	20.6	20.4	20.8
Organic Nitrogen [mg/L]	22-Oct-24	15:34	23-Oct-24	11:20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	22-Oct-24	15:34	23-Oct-24	11:20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Unionized Ammonia [mg/L as N]	22-Oct-24	17:43	23-Oct-24	11:04	0.004	0.002	0.005	0.002	0.007	0.006	0.005	0.019
Ammonia+Ammonium (N) [as N mg/L]	22-Oct-24	17:43	23-Oct-24	11:03	0.1	< 0.1	< 0.1	< 0.1	0.2	0.1	0.1	0.4
4AAP-Phenolics [mg/L]	21-Oct-24	14:09	22-Oct-24	09:51	< 0.002	0.016	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	21-Oct-24	21:13	23-Oct-24	10:13	4	58	< 1	< 1	1	< 1	1	2
Phosphorus (total) [mg/L]	22-Oct-24	19:08	24-Oct-24	15:27					0.08			1.84
Phosphorus (dissolved reactive) [mg/L]	22-Oct-24	11:08	23-Oct-24	07:44					< 0.03			< 0.03
Chloride [mg/L]	21-Oct-24	10:48	23-Oct-24	12:32	37	150	< 1	2	1	5	5	< 1
Sulphate [mg/L]	21-Oct-24	10:53	23-Oct-24	12:32	9	5	14	19	3	10	13	16
Nitrite (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	0.10	< 0.06	< 0.06	< 0.06	< 0.06	0.15	0.10	< 0.06
Nitrate + Nitrite (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	0.10	< 0.06	< 0.06	< 0.06	< 0.06	0.15	0.10	< 0.06
Hardness (dissolved) [mg/L as CaCO3]	22-Oct-24	09:04	24-Oct-24	08:58	186	224	215	234	295	226	242	193
Aluminum (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.003
Barium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.0134	0.0234	0.0299	0.0250	0.00649	0.00773	0.0110	0.0370
Cadmium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.000012	< 0.000003	0.000006	0.000005	0.000005	< 0.000003	0.000007	0.000003
Chromium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.00008	0.00009	< 0.00008	< 0.00008	0.00010	< 0.00008	< 0.00008	0.00014
Copper (dissolved) [mg/L]	22-Oct-24	09:04	24-Mar-25	09:02	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Lead (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00015	< 0.00009	< 0.00009	< 0.00009
Manganese (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.0676	0.359	0.00148	0.00084	0.00039	0.00024	0.00050	0.00510
Magnesium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	12.4	16.1	21.0	22.2	25.1	21.3	22.1	18.3
Calcium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	54.2	63.1	51.2	57.0	76.6	55.5	60.4	47.1

0004054487

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Works #:	120001577
Project:	PO#017018
LR Report:	CA15168-OCT24

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: Well 5I-OW5-I (Well 5)	6: Well 5D-OW5-D (Well 6)	7: Well 9D-OW9-D (Well 20)	8: Well 9I-OW9-I (Well 19)	9: Well 9S-OW9-S (Well 18)	10: Well 8I-OW8-I (Well 16)	11: Well 8D-OW8-D (Well 17)	12: Well 10S-OW10-S (Well 23)
Iron (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.020	0.228	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	21.3	69.2	3.22	4.75	0.90	1.72	1.24	2.53
Phosphorus (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.021	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Zinc (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

*Report revised to include Copper results.

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0004054487

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #:120001577Project :PO#017018

24-March-2025

 Date Rec. :
 18 October 2024

 LR Report:
 CA15168-OCT24

#2

Copy:

CERTIFICATE OF ANALYSIS Final Report - Revised

1:	2:	3:	4:	13:	14:	15:	16:	17:	18:	19:	20:
Analysis Start	Analysis Start	Analysis	Analysis				Well 1I-OW1-I	Well 6I-OW6-I	Well 6D-OW6-D	Well 57-OW57	Well 56-OW56
Date	Time			(Well 24)	(Well 10)	(Well 22)	(Well 21)	(Well 3)	(Well 2)	(Well 13)	(Well 12)
		Date	Time	16 Oct 24 14:10	16 Oct 24 14:00	16 Oct 24 12:50	16 Oct 24 12:40	16 Oct 24 12:20	16 Oct 24 12:20	16 Oct 24 12:50	15-Oct-24 14:00
											14.0
											389
											659
											7.32
											18.7
											< 0.5
											< 0.5
											< 0.001
											0.1
21-Oct-24	14:09	22-Oct-24	09:51	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
21-Oct-24	21:13	23-Oct-24	10:13	2	2	< 1	2	1	< 1	2	2
22-Oct-24	19:08	24-Oct-24	15:27	< 0.03	0.04						
22-Oct-24	11:08	23-Oct-24	07:44	< 0.03	< 0.03						
21-Oct-24	10:48	23-Oct-24	12:32	2	100	1	< 1	2	< 1	< 1	< 1
21-Oct-24	10:53	23-Oct-24	12:32	11	19	9	3	9	6	4	< 2
19-Oct-24	08:25	22-Oct-24	12:51	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
19-Oct-24	08:25	22-Oct-24	12:51	0.52	0.40	< 0.06	< 0.06	< 0.06	< 0.06	0.37	< 0.06
19-Oct-24	08:25	22-Oct-24	12:51	0.52	0.40	< 0.06	< 0.06	< 0.06	< 0.06	0.37	< 0.06
22-Oct-24	09:04	24-Oct-24	08:58	331	301	217	335	290	241	493	340
22-Oct-24	09:04	24-Oct-24	08:58	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.003
22-Oct-24	09:04	24-Oct-24	08:58	0.00723	0.0159	0.0205	0.00866	0.0460	0.0233	0.0111	0.00738
22-Oct-24	09:04	24-Oct-24	08:58	< 0.000003	0.000003	0.000005	0.000004	0.000004	< 0.000003	< 0.000003	0.000008
22-Oct-24	09:04	24-Oct-24	08:58	0.00009	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
22-Oct-24	09:04	24-Mar-25	09:02	< 0.001	0.003		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
											< 0.00009
											0.0175
											21.8
											100
	Analysis Start Date	Analysis Start Date Analysis Start Time 21-Oct-24 08:19 21-Oct-24 08:19 21-Oct-24 08:19 21-Oct-24 08:19 21-Oct-24 08:19 21-Oct-24 08:19 21-Oct-24 15:34 22-Oct-24 15:34 22-Oct-24 17:43 22-Oct-24 17:43 21-Oct-24 19:08 22-Oct-24 10:68 22-Oct-24 10:53 19-Oct-24 08:25 19-Oct-24 08:25 19-Oct-24 09:04 22-Oct-24 09:04 <t< td=""><td>Analysis Start Date Analysis Start Time Analysis Completed Date 21-Oct-24 08:19 22-Oct-24 21-Oct-24 15:34 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 21-Oct-24 17:43 23-Oct-24 22-Oct-24 17:08 23-Oct-24 22-Oct-24 10:08 23-Oct-24 22-Oct-24 10:08 23-Oct-24 21-Oct-24 10:08 23-Oct-24 21-Oct-24 08:25 22-Oct-24 19-Oct-24 08:25 22-Oct-24 19-Oct-24 09:04 24-Oct-24 22-Oct-24 09:04 24-Oct-24</td><td>Analysis Start DateAnalysis Start TimeAnalysis Completed DateAnalysis Completed Time21-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2415:3423-Oct-2411:2022-Oct-2415:3423-Oct-2411:2022-Oct-2417:4323-Oct-2411:0322-Oct-2417:4323-Oct-2410:1322-Oct-2417:4323-Oct-2410:1321-Oct-2419:0824-Oct-2410:1322-Oct-2411:0823-Oct-2410:1322-Oct-2410:6323-Oct-2412:3221-Oct-2410:6323-Oct-2412:3222-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:5119-Oct-2408:2522-Oct-2412:5119-Oct-2408:2522-Oct-2412:5119-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408</td><td>Analysis Start Date Analysis Start Time Analysis Completed Date Analysis Completed Time Well 11S-OW11-S (Well 24) 2 Completed Date Completed Time Completed Time (Well 24) 2 Cot-24 08:19 22-Oct-24 12:46 322 21-Oct-24 08:19 22-Oct-24 12:46 616 21-Oct-24 08:19 22-Oct-24 12:46 7.95 21-Oct-24 08:19 22-Oct-24 12:46 7.95 21-Oct-24 15:34 23-Oct-24 11:20 < 0.5</td> 22-Oct-24 15:34 23-Oct-24 11:20 < 0.5</t<>	Analysis Start Date Analysis Start Time Analysis Completed Date 21-Oct-24 08:19 22-Oct-24 21-Oct-24 15:34 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 22-Oct-24 17:43 23-Oct-24 21-Oct-24 17:43 23-Oct-24 22-Oct-24 17:08 23-Oct-24 22-Oct-24 10:08 23-Oct-24 22-Oct-24 10:08 23-Oct-24 21-Oct-24 10:08 23-Oct-24 21-Oct-24 08:25 22-Oct-24 19-Oct-24 08:25 22-Oct-24 19-Oct-24 09:04 24-Oct-24 22-Oct-24 09:04 24-Oct-24	Analysis Start DateAnalysis Start TimeAnalysis Completed DateAnalysis Completed Time21-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2408:1922-Oct-2412:4621-Oct-2415:3423-Oct-2411:2022-Oct-2415:3423-Oct-2411:2022-Oct-2417:4323-Oct-2411:0322-Oct-2417:4323-Oct-2410:1322-Oct-2417:4323-Oct-2410:1321-Oct-2419:0824-Oct-2410:1322-Oct-2411:0823-Oct-2410:1322-Oct-2410:6323-Oct-2412:3221-Oct-2410:6323-Oct-2412:3222-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:3221-Oct-2410:5323-Oct-2412:5119-Oct-2408:2522-Oct-2412:5119-Oct-2408:2522-Oct-2412:5119-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408:5822-Oct-2409:0424-Oct-2408	Analysis Start Date Analysis Start Time Analysis Completed Date Analysis Completed Time Well 11S-OW11-S (Well 24) 2 Completed Date Completed Time Completed Time (Well 24) 2 Cot-24 08:19 22-Oct-24 12:46 322 21-Oct-24 08:19 22-Oct-24 12:46 616 21-Oct-24 08:19 22-Oct-24 12:46 7.95 21-Oct-24 08:19 22-Oct-24 12:46 7.95 21-Oct-24 15:34 23-Oct-24 11:20 < 0.5	Analysis Start Date Analysis Time Analysis Completed Date Mell 11S-OW11-S Well 12S-OW12-S (Well 24) Time 16-Oct-24 14:10 16-Oct-24 14:10 14.0 16-Oct-24 14:10 21-Oct-24 08:19 22-Oct-24 12:46 322 296 21-Oct-24 08:19 22-Oct-24 12:46 616 899 21-Oct-24 08:19 22-Oct-24 12:46 19.6 18.5 22-Oct-24 15:34 23-Oct-24 11:20 < 0.5	Analysis Start Date Analysis Time Analysis Completed Date Analysis Completed Time Well 115-0W11-5 (Well 24) Well 125-0W12-S (Well 20) Well 12-0W1-b (Well 20)	Analysis Start Date Analysis Time Analysis Completed Date Mell 11-OW11-S (Well 24) Well 110-W12-S (Well 10) Well 11-OW1-D (Well 22) Well 11-OW1-D (Well 22) 1	Analysis Start Date Analysis Time Analysis Complete Date Well 115-0W1-15 (Well 24) Well 129-0W1-25 (Well 20) Well 10-0W1-15 (Well 20) 11-00-124 06:19 22-0c1-24 12:46 322 296 285 358 318 21-0c1-24 08:19 22-0c1-24 12:46 795 7.92 8.10 7.71 7.69 21-0c1-24 08:19 22-0c1-24 11:20 < 0.5	Analysis Start Date Analysis Start Imme Analysis Complete Date Analysis (Well 24) Well 122-OW12-S (Well 24) Well 11-OW1-D (Well 21) Well 10-OW6-D (Well 22)	Analysis Start Date Analysis Start Completed Time Multi SC-W11-5 (Well 2) Well ID-CW1-D (Well 2) ID-CU2-2413.00 ID-CU2-241

0004054492

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Works #:	120001577
Project:	PO#017018
LR Report:	CA15168-OCT24

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	13: Well 11S-OW11-S (Well 24)	14: Well 12S-OW12-S (Well 10)	15: Well 1D-OW1-D (Well 22)	16: Well 1I-OW1-I (Well 21)	17: Well 6I-OW6-I (Well 3)	18: Well 6D-OW6-D (Well 2)	19: Well 57-OW57 (Well 13)	20: Well 56-OW56 (Well 12)
Iron (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Sodium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	1.40	65.4	17.0	2.18	2.22	5.49	0.70	0.74
Phosphorus (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.003	< 0.003	0.027	0.200	< 0.003	0.008	0.004	< 0.003
Zinc (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

*Report revised to include Copper results.

Carrie Greenlaw Project Specialist, Environment, Health & Safety

0004054492

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

OCWA-Grey Bruce (Tobermory Sewage Plant)

Attn : Karla Young

P.O. Box 760 Southampton, ON N0H 2L0, Canada

Phone: 519-797-2561 Fax:pdf Works #:120001577Project :PO#017018

24-March-2025

 Date Rec. :
 18 October 2024

 LR Report:
 CA15168-OCT24

#2

Copy:

CERTIFICATE OF ANALYSIS Final Report - Revised

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	21: Well 2I-OW2-I (Well 8)	22: Well 2D-OW2-D (Well 9)	23: Well 55-OW55 (Well 11)	24: Well 60-OW60 (Well 14)	25: Well 61-OW61 (Well 15)
Sample Date & Time					15-Oct-24 13:35	15-Oct-24 13:45	15-Oct-24 12:40	15-Oct-24 14:30	15-Oct-24 14:35
Temperature Upon Receipt [°C]					14.0	14.0	14.0	14.0	14.0
Alkalinity [mg/L as CaCO3]	21-Oct-24	08:19	22-Oct-24	12:46	377	155	346	315	257
Conductivity [uS/cm]	21-Oct-24	08:19	22-Oct-24	12:46	670	335	630	1090	645
pH [No unit]	21-Oct-24	08:19	22-Oct-24	12:46	7.88	7.83	7.03	7.61	7.68
Temperature @ pH [°C]	21-Oct-24	08:19	22-Oct-24	12:46	21.4	21.2	17.5	17.5	17.4
Organic Nitrogen [mg/L]	22-Oct-24	15:34	23-Oct-24	11:20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Kjeldahl Nitrogen [as N mg/L]	22-Oct-24	15:34	23-Oct-24	11:20	< 0.5	< 0.5	< 0.5	0.6	< 0.5
Unionized Ammonia [mg/L as N]	22-Oct-24	17:43	23-Oct-24	11:04	0.001	0.001	< 0.001	0.002	< 0.001
Ammonia+Ammonium (N) [as N mg/L]	22-Oct-24	17:43	23-Oct-24	11:03	< 0.1	< 0.1	0.1	0.1	< 0.1
4AAP-Phenolics [mg/L]	21-Oct-24	14:09	22-Oct-24	09:51	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dissolved Organic Carbon [mg/L]	21-Oct-24	21:13	23-Oct-24	10:13	1	1	24	4	2
Phosphorus (total) [mg/L]	22-Oct-24	19:08	24-Oct-24	15:27					
Phosphorus (dissolved reactive) [mg/L]	22-Oct-24	11:08	23-Oct-24	07:44					
Chloride [mg/L]	21-Oct-24	10:48	23-Oct-24	12:32	< 1	< 1	< 1	180	49
Sulphate [mg/L]	21-Oct-24	10:53	23-Oct-24	12:32	4	7	< 2	44	20
Nitrite (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	< 0.03	0.11	< 0.03	< 0.03	< 0.03
Nitrate (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	< 0.06	3.12	< 0.06	0.11	0.09
Nitrate + Nitrite (as N) [mg/L]	19-Oct-24	08:25	22-Oct-24	12:51	< 0.06	3.23	< 0.06	0.11	0.09
Hardness (dissolved) [mg/L as CaCO3]	22-Oct-24	09:04	24-Oct-24	08:58	359	143	347	341	270
Aluminum (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Barium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.0199	0.0195	0.0194	0.0111	0.0120
Cadmium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.000006	< 0.000003	< 0.000003	0.000006	0.000003
Chromium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Copper (dissolved) [mg/L]	22-Oct-24	09:04	24-Mar-25	09:02	< 0.001	< 0.001	< 0.001	0.001	< 0.001
Lead (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Manganese (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.0154	0.00004	0.414	0.0875	0.00235
Magnesium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	28.7	17.2	19.9	25.4	21.7
Calcium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	96.3	28.8	106	94.5	72.2

0004054496

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

 Works #:
 120001577

 Project :
 PO#017018

 LR Report :
 CA15168-OCT24

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	21: Well 2I-OW2-I (Well 8)	22: Well 2D-OW2-D (Well 9)	23: Well 55-OW55 (Well 11)	24: Well 60-OW60 (Well 14)	25: Well 61-OW61 (Well 15)
Iron (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.007	< 0.007	< 0.007	0.007	< 0.007
Sodium (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	1.81	7.00	0.82	86.2	24.8
Phosphorus (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	0.071	0.042	< 0.003	0.060	0.013
Zinc (dissolved) [mg/L]	22-Oct-24	09:04	24-Oct-24	08:58	< 0.002	0.004	< 0.002	< 0.002	< 0.002

Note: Provincial unionized ammonia calculated using lab results for pH and temperature.

*Report revised to include Copper results.

Carrie Greenlaw Project Specialist, Environment, Health & Safety

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Appendix C Sludge Haulage Volumes

2024- Parks Canada Hauled Sewage

		January	February	March	April	Мау	June	July	August	September	October	November	December	TOTAL
Scott Septic Pumping	Cyprus Lake Park					189,000	287,000	420,000	420,000	231,000	87,500	45,500		1,680,000
Bruce Peninsula	Cyprus Lake				8,300					14,800				23,100
Septic Service	120 Chi sin tib dek Road							200						200
	Total	0	0	0	8,300	189,000	287,000	420,200	420,000	245,800	87,500	45,500	0	1,703,300
														7,743 m3

*amounts in gallons

1,703,300 Imperial gallons is equivalent to 7,743355.097 litres (1 Imperial Gallon = 4.54609 litres)

Appendix D Calibration Reports

ABB MEASUREMENT & ANALYTICS | TEST REPORT

ABB Ability™ Verification for measurement devices

Verification Report for:

WaterMaster

Measurement made easy

Measurement & Analytics Service

Installation Details

Meter Owner
Machine Name
Medium

Operator Details

Date and Time	30-05-2024 14:48:40
Operator's Name	Admin
Operator's Signature	

Customer Details

Site Address	Tobermory SPS
Telephone	
Email	

Overall Status - Passed

The flowmeter has passed its internal continuous verification and automatic self-calibration. It is working within +/- 2% of original factory calibration.

ABB Ability Verification for measurement devices verifies the function of the measurement product within the specification limits over the lifetime of the device with a total test coverage > 90% and complies with the requirements for traceable verification according to DIN EN ISO 9001:2015 - section 8.5

Sensor Information	
Sensor Serial No.	1
Sensor SAP/ERP No.	3K620000270131
Sensor Type	WM Full Bore
Sensor Size	DN 150
Q3	25.000 l/s
Calibration Accuracy	OIML Class 2
Sensor Calibration Factors	140.253 %, -4.301 mm/s
Date of Manufacture	10:20:07 2018/06/27
Sensor User Span/Zero	100.000 %, 0.000 mm/s
User Flow Cutoff/Hysteresis	1.000 %, 20.000 %
Coil Current	180.000 mA
Coil Inductance	153.932 mH
Coil / Loop Resistance	35.600 Ohm

Transmitter Information		
Transmitter Serial No	9033561	
Transmitter SAP/ERP No.	3K620000270131	
Application Version	V01.07.00 03/02/17	
MSP Version	01.00.00	
Date of Manufacture	16:06:06 2018/04/18	
Tx Gain Adjustment	0.036 %	
OIML Accuracy Alarms	OFF	
Mains Freq	60.000 Hz	
Qmax	25.000 l/s	
Pulses/Unit	30.000	
FS Freq	0.750 Hz	
Pulses Limit Freq	1200.000 Hz	
Meter Mode	Forward And Reverse	

Summary Verification of the Sensor		
Summary of Results		
Coil Group	PASS	
Electrode Group	PASS	
Sensor Group	PASS	
Transmitter Signal	PASS	
Transmitter Driver	PASS	
Configuration	PASS	
Sensor Data		
Coil Inductance Shift	0.000 %	
Cable Length	0 m	
Electrode Backoff Voltage	0.199 V	
Electrode Differential Voltage	-0.034 V	
Pipe Status	Full Pipe	

Summary Verification of the Transmitter				
Output G	roup			
Current O	utput 31/32	PASS	PASS	
Applied	Measur	ed	Result	
4 mA	4.000 m	۱A	PASS	
12 mA	11.986 r	nA	PASS	
20 mA	20.000 r	nA	PASS	
Pulse Output 41/42		NOT EX	XECUTED	
Applied	Measur	ed	Result	
5250 Hz				
2625 Hz				
Pulse Out	put 51/52	NOT EX	XECUTED	
Applied	Measur	ed	Result	
5250 Hz				
2625 Hz				
Totalizer Information				
	Start	End	Difference	
Forward	425172.000 m ³	425172.000 m ³	0.000 m ³	
Reverse	465.000 m ³	465.000 m³	0.000 m³	

424707.000

т³

Net

424707.000

т³

0.000 m³

DMM-20 used for mA Output readings

Verification Certificate has been generated by ABB Ability Verification for measurement devices variant "Licensed software testing" (ABB WaterMaster VDF Version 03.34).

ABB Ability Verification for measurement devices Version 04.00.00.7

To find your local ABB contact, visit: abb.com/contacts

For more information, visit: abb.com/measurement

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

For further details regarding ABB's warranties arising from the usage of the information including by you or any third party please refer to the Agreement. Copyright & 2022 ABB

Appendix E

Biosolids Volume Modeling and Distribution Surveys for Lagoon Cells 1 & 2

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey

Date; July 23, 2020.

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Prepared For: Mr. Leo-Paul Frigault Operations Manager Ontario Clean Water Agency West Highlands Hub Wiarton, On

Prepared By: Paul Makar PW MAKAR INSPECTION SERVICES LTD.

TABLE OF CONTENT

2.0 S 3.0 C 4.0 A 5.0 B 6.0 C	DISCLAIMI BSTRAC BIOSOLID BENERAL	CRIPTION ER T S DEPTH EVALUATION SITE EVALUATIONS	3-4 5 5-6 6-7 7
		UME COMPUTATIONS – Biosolids Sludge	8-9
APPEN	DED FIGU	JRES	10
FIGURE	E No.: 5	SITE MAP LOCATION SITE AERIAL MAP LOCATION VISUAL REPRESENTATION OF LAGOON SLICED	11 12 13
LIST OF	PLOTS		
PLOT 1		DON GEOREFERENCING IMAGE AND VESSEL KING LINES	14
PLOT 2	LAGC	ON GEOREFERENCING IMAGE AND SITE DESCIP	TION 15
PLOT 3	LAGC PLOT	OON UPPER BIOSOLIDS SURFACE CONTOUR MAP	16
PLOT 4	_	DON UPPER BIOSOLIDS SURFACE 3D ACE PLOT	17
PLOT 5	LAG	DON SUB-BOTTOM CONTOUR PLOT MAP	18
PLOT 6	LAG	DON SUB-BOTTOM 3D SURFACE PLOT	19
PICTOR		ORT	20-22
<u>SAFET'</u>	Y DOCUM	ENTATION	
TASC CARDS FOR THE TIME ON-SITE 22-25			22-25

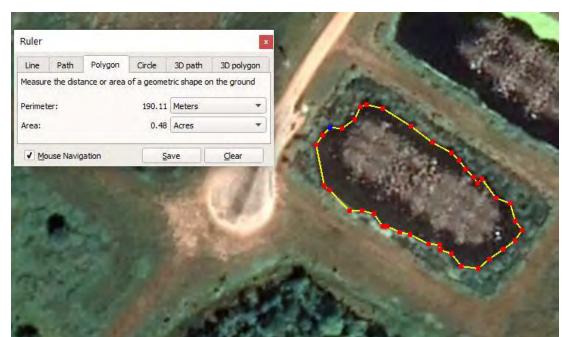
1.0 INTRODUCTION

- 1.1 The Ontario Clean Water Agency contracted PW MAKAR INSPECTION SERVICES LTD. to conduct a Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey of the Tobermory primary retention wastewater-biosolids Cell #1.
- 1.2 The intent of this survey was to determine biosolids sludge volumes, identify biosolids sludge distribution patterns and loading areas within the Tobermory primary retention wastewater-biosolids Cell #1.
- 1.3 The Tobermory primary biosolids Cell #1 has an aeration mixing system, which was turned off for a period of 6 days prior to the hydrographic survey. This was to allow the suspended sludge particulate matter to settle and to dissipate any air pockets trapped within the biosolids sludge.
- 1.4 The survey was performed using a multi-frequency (200, 50 and a 12 kHz) acoustic profiling system in the shallow wastewater of the Tobermory Biosolids Cell #1. "Generally", PW MAKAR has a two person survey crew conducting the multi patterns of survey lines. A manned vessel motor operator and safety advisor and a sonar technician, taking sludge samples, calibrating, setting the transduce frequencies and monitoring the raw data streaming from the remote controlled survey vessels onboard computer system to the Toughbook computer system in the manned vessel. The remote controlled survey vessel is attached to the manned vessel as a precaution on wastewater biosolids lagoons/cells due to plant growth and debris on the surface.
 - 1.4.1 The Tobermory Biosolids Cell #1 had an extensive amount of debris both on the surface and below the surface so much so it impacted the outboard motor of the manned vessel. To complete the hydrographic survey, PW MAKAR's sonar technician had to manually row the remote controlled survey vessel and manned vessel. Our vessel motor operator and safety advisor was on shore monitoring the events.

1.4.1.1

Figure #1. Remote controlled, unmanned survey vessel, attached to manned vessel, in the Tobermory primary retention wastewater-biosolids Cells.

1.5 The precision navigation was provided by the survey vessels on-board GPS system and is incorporated with the acoustic profiling system. Processing of the acoustic data



provides both an indication of the present fluid depth and an image of the extent of biosolids between the fluid bottom (upper biosolids surface contour bathymetric) and the liner/clay bottom (sub-bottom liner/clay contour) of the Tobermory Biosolids Cell #1.

1.6 This Biosolids Volumes and Distribution Survey were prompted by the Ontario Clean Water Agency Tobermory, Ontario, so that further treatment alternatives could be looked at.

2.0 SITE DESCRIPTION

- 2.1 The Tobermory wastewater treatment works consists of two (2) wastewater retention biosolids Cells, Cell #1 primary treatment and Cell #2 secondary treatment.
 - 2.1.1 Both the Cell #1 and Cell #2 were surveyed at this time. Cell #2 hydrographic report will be a separate report and not associated with this Cell #1 hydrographic report.
- 2.1 The underwater area surveyed within the Tobermory primary retention wastewaterbiosolids Cell #1 – survey date; July 23, 202, has an underwater **Positive Planar Area** of **1,913.49 m²** or **0.47 acres** or **0.19 Ha**.
 - 2.1.1.1 **Please note**; the area surveyed within the Tobermory primary retention wastewater-biosolids Cell #1 is dependent on the water level at the time of the survey. Any obstruction within the lagoon i.e. dykes, aeration systems, rock outcrops above and below the water, aquodic plant life can also affect the size of the survey area.

2.1.2

Figure #2. An area reference qualifier was conducted by a polygon measurement made in Google Earth 7/8/2019 image of the Tobermory Biosolids Cell #1 was found to be approximately 0.48 Acres.¹

2.1.3 The Tobermory Biosolids Cell #1 property is located on the south side of Highway 6, approximately 3.5 kms from the Town of Tobermory, Ontario

3.0 DISCLAIMER

- 3.1 While PW MAKAR INSPECTION SERVICES LTD believes it has used best practice in obtaining the information contained in this report, in no event will PW MAKAR INSPECTION SERVICES LTD be liable for any commercial costs, damages, loss of profit, property damage or personal injury, including death sustained or suffered in connection with the use of data or subsequent processing of materials obtained during field efforts by PW MAKAR INSPECTION SERVICES LTD during this program, or consequential damages including, but not limited to those related to dredging, removal of biosolids, disposal of biosolids, or contamination resulting from use of data obtained from this report or efforts or conclusions drawn from this report.
- 3.2 PW MAKAR INSPECTION SERVICES LTD makes no warranty, either expressed or implied, regarding the suitability or fitness of any data or information contained in this report for a particular purpose or that the information will satisfy the requirement of any law, rule, specification, or contract.
- 3.3 The maximum liability of PW MAKAR INSPECTION SERVICES LTD. from all causes related to this work, field efforts, report or discussions about this effort is limited to the funding received by PW MAKAR INSPECTION SERVICES LTD for this work. Acceptance of this report signifies acceptance of this disclaimer.
- 3.4 This report shall be deemed accepted if no protest is received within 60 days of the issuance date of this report.

4.0 ABSTRACT

- 4.1 The shallow hydrographic underwater acoustic sonar survey was conducted on July 23, 2020, and this report reflects the water content and biosolids sludge levels at the time of this hydrographic survey.
- 4.2 The hydrographic survey was performed by PW MAKAR INSPECTION SERVICES LTD's, Sonar Technician, the survey complies with IHO (International Hydrographic Organization) Standards.
- 4.3 Transducer sound <u>calibration</u> checks were performed prior to the start of the hydrographic survey in the Tobermory Biosolids Cell #1.

¹ Google Earth. 7/8/2019. - Most Current Google Image.

4.4 Biosolids samples were requested, they were obtain at different locations throughout from Cell #1 and put sample bottles supplied by OCWA.

5.0 BIOSOLIDS DEPTH EVALUATIONS

- 5.1 The sub-bottom contour in the Tobermory Biosolids Cell #1, has a "hard pack" subbottom layer i.e. clay, hard pack soil. All three of our hydrographic acoustic sonar transducers were utilized to determine the bathymetric bottom and sub-bottom in the lagoon.
 - 5.1.1 Biosolids Isopach, volume computations were calculated from the bathymetric (upper surface) biosolids sludge layer using the 200 kHz transducer and the subbottom hard pack layer/liner utilizing both the 50 kHz and 12 kHz transducers.

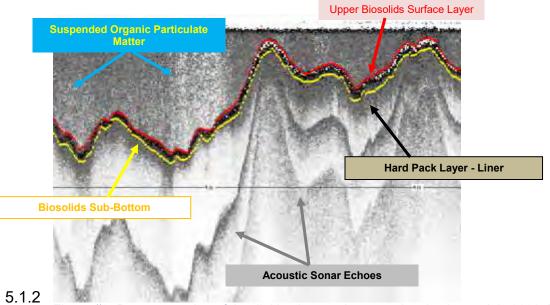


Figure #3. Post processing of the digitized acoustic sonar signal echoes, July 2020, Tobermory Biosolids Cell #1.

- 5.2 The water level elevation was appropriate for conducting a hydrographic survey; extensive debris and aquodic plant life was present within the Tobermory Biosolids Cell #1 as well as growing within the inner berm, which have encroached upon the survey area particularly on the North, West and East sides of Cell #1.
 - 5.2.1 There was adequate access and egress into Cell #1 at the time of the survey.
 - 5.2.2 The total volume of biosolids surveyed on July 23, 2020 in the Tobermory Biosolids Cell #1, is approximately **519.63 m³** or **679.65 yd³**.
 - 5.2.2.1 To calculate a percentage of biosolids sludge, a grid volume computation was calculated from the bathymetric biosolids sludge bottom (defined as the top of the biosolids sludge) and the sub-bottom

Inspection Services Ltd. 481 Murray Dr. Corunna, ON., NON 160 Servicing the Industrial, Municipal & Commercial Sectors

of the biosolids sludge i.e. the top of the lagoon/cell liner. It is then divided by the grid volume computation calculated from the top of the liquid/water to the sub-bottom of the biosolids sludge of the lagoon/cell liner. The two number sets are then times (x) by 100 to determine a percentage of the biosolids.

Please note; the percentages of biosolids volumes will change/increase if water levels in the lagoon/cell fluctuate. In addition, if aluminum sulfate is added to the water and the suspended organic particles settles to the bottom this will add to the amount of biosolids sludge.

As well; the aeration mixing system was turned off for a period of 6 days prior to the hydrographic survey, there was still suspended organic matter in the water column of Cell #1 which would increase in the total amount of sludge if the suspended organic matter were to completely settle.

- 5.2.2.1.1 Therefore, on this date the percentage of biosolids buildup in the Tobermory Biosolids Cell #1 is approximately **12.68%**.
- 5.2.3 PW MAKAR Inspection Services Ltd. collected **24,362** digitized data value points in the Tobermory Biosolids Cell #1. The digitized data value points represent both the bathymetric bottom and sub-bottom biosolids values with GPS navigational values.
 - 5.2.3.1 Each individual data value point consists of an XYZ value. X value is an Easting coordinate; Y value is a Northing coordinate and Z consists of a biosolids/sludge elevation processed in meters.
 - 5.2.3.2 The average depth of biosolids sludge throughout the Tobermory Biosolids Cell #1 on this date was approximately 0.27 m or 270 mm or 10.62 in.

6.0 GENERAL SITE EVALUATIONS

- 6.1 There is a heavy amount of short vegetation growing around the top of the beam of the wastewater lagoons, which should be monitored and cut back as required if not being allocated already.
- 6.2 There is extensive debris and aquodic plant life was present within the Tobermory Biosolids Cell #1 as well as growing within the inner berm, which have encroached upon the survey area particularly on the North, West and East sides of Cell #1.
- 6.3 There were no apparent berm erosion issues identified at this time.
- 6.4 Lagoon warning signage appeared appropriate.

Reported by: Paul Makar Paul Makar

PW MAKAR COATINGS INSPECTION LTD. NACE CERTIFIED COATINGS INSPECTOR #137.

Grid Volume Computations

Bathymetric (Upper) Biosolids Surface and Sub-Bottom (Lower) – Liner Surface.

Tobermory primary retention wastewater-biosolids Cell #1.

Fri Jul 31 08:49:42 2020

Upper Surface

Grid File Name: Layer Blanked out x2.grd Grid Size:	C:- PROJECTS\OCWA - Tobermory Lagoon Surveys\Tobermory Cell 1 Tobermory - A 88 rows x 100 columns
X Minimum:	448977.51
X Maximum:	449047.65
X Spacing:	0.70848484848499
Y Minimum:	5008992.64
Y Maximum:	5009052.52
Y Spacing:	0.68827586206768
Z Minimum:	-3.5706332640788
Z Maximum:	-0.29154967337266
Lower Surface	
Grid File Name: Layer BLANKEDout.grd Grid Size:	C:- PROJECTS\OCWA - Tobermory Lagoon Surveys\Tobermory Cell 1 - Tobermory - B- 88 rows x 100 columns

X Minimum:448977.9X Maximum:449047.72X Spacing:0.70525252525201

5008991.57

Y Minimum:

Page 8 of 25

Y Maximum:	5009052.97
Y Spacing:	0.70574712643036
1 5	
Z Minimum:	-3.7645280032213
Z Maximum:	-0.29552466459216

Volumes

Z Scale Factor:

Total Volumes by:

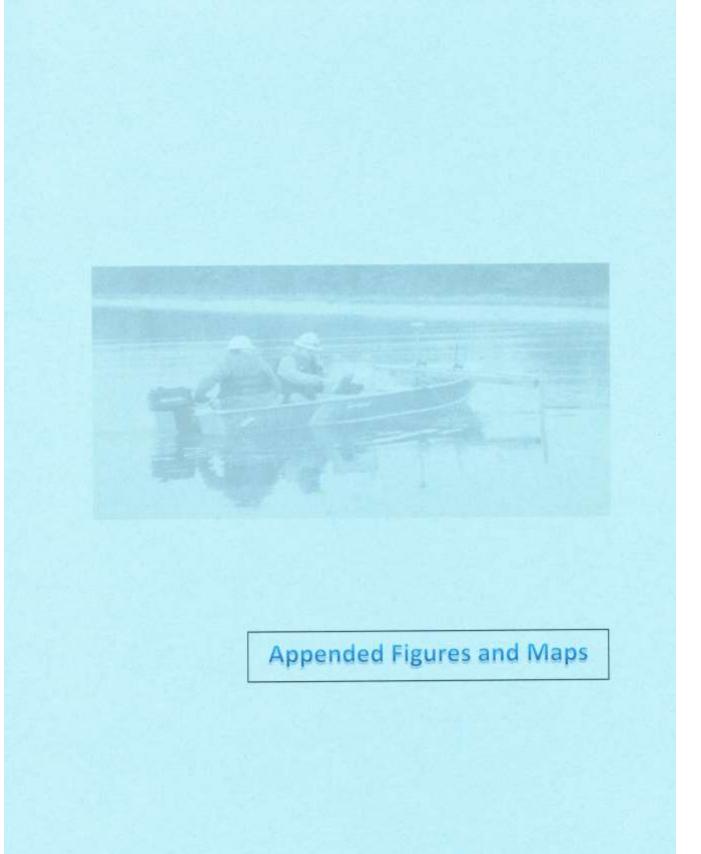
Trapezoidal Rule:	509.75092006387
Simpson's Rule:	510.92281152889
Simpson's 3/8 Rule:	510.48660577901

Cut & Fill Volumes

Positive Volume [Cut]:	519.63367514349 m³ or 679.65 yd³.
Negative Volume [Fill]:	9.8827550796175
Net Volume [Cut-Fill]:	509.75092006387

1

Areas


Planar Areas

Positive Planar Area [Cut]:	1913.4980118853 m ² or 0.47 acres or 0.19 Ha.
Negative Planar Area [Fill]:	82.647924934744
No Data Planar Area:	2290.8020631378
Total Planar Area:	4286.9479999578

Surface Areas

Positive Surface Area [Cut]:	1955.2692877998
Negative Surface Area [Fill]:	89.279421974063


Inspection Services Ltd. 481 Murray Dr. Corunna, ON., N9N 1G0 Servicing the Industrial, Municipal & Commercial Sectors

A

PW MAKAR INSPECTION SERVICES LTD. HAS A LICENCSING AGREEMENT WITH GOOGLE INC. TO REPRODUCE AND PUBLISH THE FOLLOWING IMAGE.NO FURTHER REPRODUCTION OR PUBLISHING OF THIS IMAGE IS PERMITTED UNLESS WRITEN CONSENT FROM PW MAKAR INSPECTION SERVICES LTD.	SITE MAP LOCATION Ontario Clean Water Agency Tobermory, On Tobermory Primary Wastewater Biosolids Cell #1.
DATE; July 23, 2020	FIGURE No.4

Inspection Services Ltd. 481 Murray Dr. Corunna, ON., N9N 1G0 Servicing the Industrial, Municipal & Commercial Sectors

A

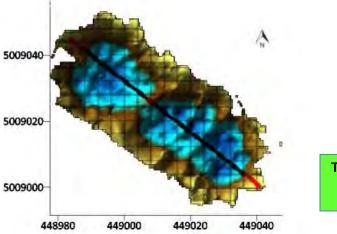
PW MAKAR INSPECTION SERVICES LTD. HAS A LICENCSING AGREEMENT WITH GOOGLE INC. TO REPRODUCE AND PUBLISH THE FOLLOWING IMAGE.NO FURTHER REPRODUCTION OR PUBLISHING OF THIS IMAGE IS PERMITTED UNLESS WRITEN CONSENT FROM PW MAKAR INSPECTION SERVICES LTD.

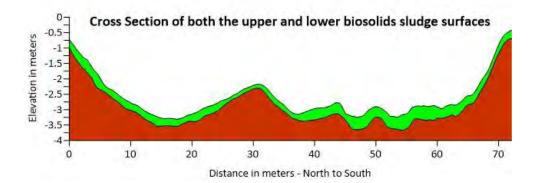
SITE AERIAL AP LOCATION

Ontario Clean Water Agency Tobermory, On Tobermory Primary Wastewater Biosolids Cell #1.

FIGURE No.5

DATE; July 23, 2020


Ontario Clean Water Agency


Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Visual Representation of the Biosolids Sludge Layers Sliced from North to South

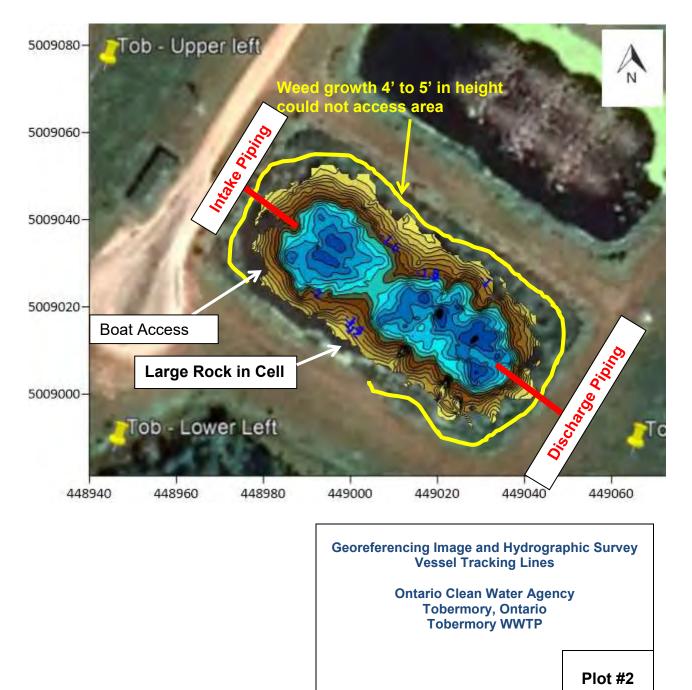
The average depth of Biosolids Sludge in the Tobermory Cell #1 is 0.27 m or 270 mm or 10.62 in.

Georeferencing Image and Hydrographic S Tracking Lines	urvey Vessel
Ontario Clean Water Agency Tobermory, Ontario Tobermory WWTP	
Survey Date: July 23, 2020.	FIGURE No.6

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

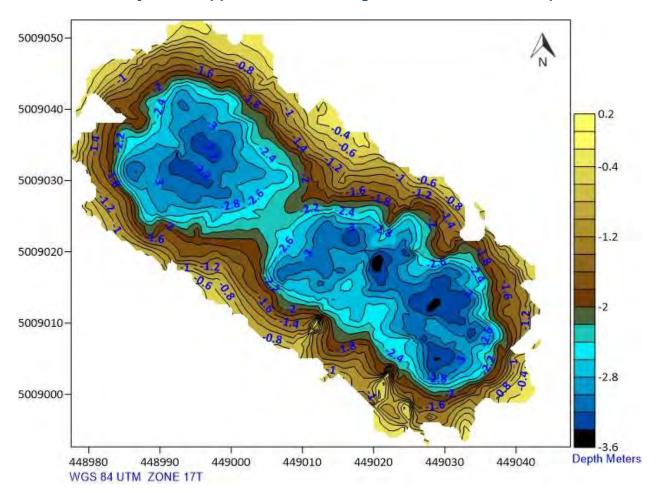
Georeferencing Image and Hydrographic Survey Vessel Tracking Lines

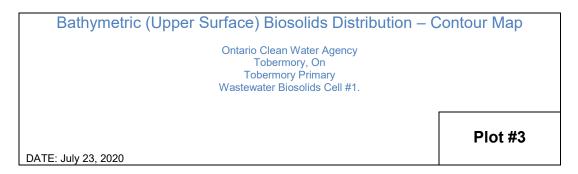


Inspection Services Ltd. 481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1. Georeferencing Image – Site Description

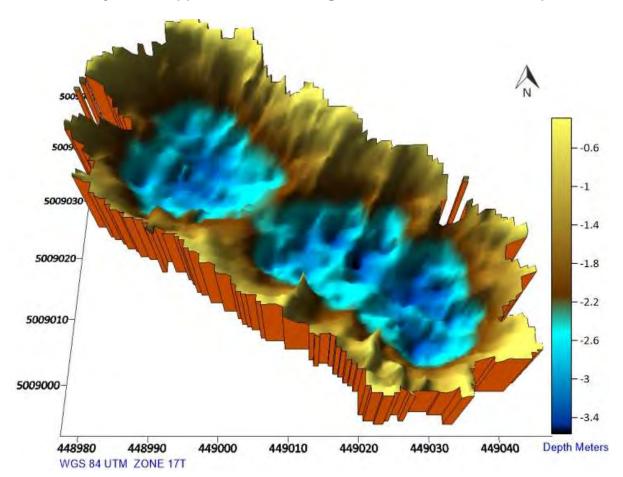

Survey Date: July 23, 2020.

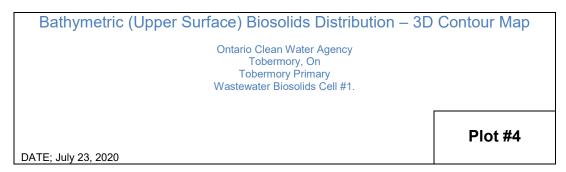

Inspection Services Ltd. 481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Bathymetric Upper Biosolids Sludge Surface – Contour Map

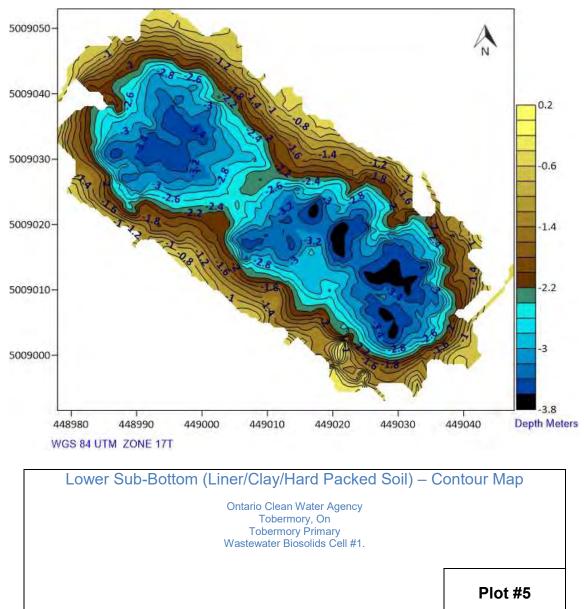




Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Bathymetric Upper Biosolids Sludge Surface – 3D Contour Map

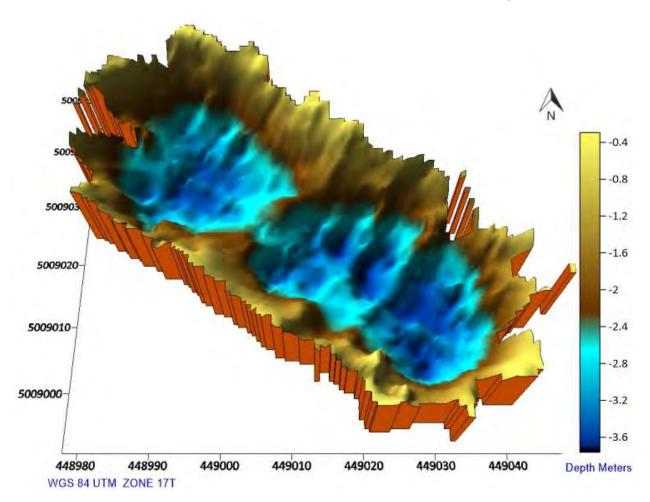


Inspection Services Ltd. 481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Lower Sub-Bottom Liner Surface – Contour Map



Inspection Services Ltd. 481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Lower Sub-Bottom Liner Surface – 3D Contour Map

Ontario Clean Water Agency

Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Primary Retention - Cell #1.

Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey

Date; July 23, 2020 PICTORIAL REPORT

Digital image #1 – Tobermory Cell #1. – Three biosolids sludge samples were taken within Cell #1.

Digital image #2 – Tobermory Cell #1. – Three biosolids sludge samples were taken within Cell #1.

Digital image #3 – Tobermory Cell #1. – Remote controlled survey vessel and manned vessel.

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Digital image #4 – Tobermory Cell #1. – Aquodic plant life on the surface of Cell#1.

SAFETY PARTNERSHIP TA	ASC	KEY STEPS
Company: PW MAKAR Employee: Jobs WILLOCIC Foreman: JNSI WILLOCIC Job Location: TOBER MORY LAGOON	Date: JJ 4 21 2020 Emergency # 911 Wind Direction: SW Emergency assembly location: T(Lucit	1. Complete card at the job site 2. If in a crew, complete together, 3. Keep the card with the crew
Do you require a permit for your work today? Yes (No) Permit # Special requirements? COUSD TEJ+ , PPE		 at all times. 4. If conditions change, the card must be reviewed with the whole crew. 5. Identify Job steps, hazards in your work area, and controls on the back of the card. 6. When job is complete return card to the supervisor. 7. If you have questions, "ASK".
Did you sign into the unit?/A Will weather conditions affect your work today?/b Is there a heat/cold stress issue today? Yes No Humidex3 S Where is the nearest eye wash station?T_{duc/c} Did you inspect your tools and equipment? Yes No Could your activities impact you or others? Yes No		
tiered work o overhead lifting o hot work o other Who is your site rep for emergency reporting? Los PAUL FRICAULT Did you sign off the permit today? Yes / No Are you mentally/ physically prepared to complete this job? (Yes.) No		It only takes a <i>minute to</i> prevent a <i>lifetime</i> of pain
Workers Names:	sinplete this job 1 (1 es y No	
GREG CHALMER	1	

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Describe your task today: SUNAR COLL 1 al 2	Did you visually inspect job-site BEFORE STARTING WORK?: (Yes) No Any issues? DEBRIJ, A C(E)		
Job Steps	Hazards	Controls	
A(CE) LAGand	WILD LEPE	WATCH MERS and Privily	
PUT VENIC / DUAT To COLL	JLIP, TRIP, FALLS	WE Ropes, Rey in Purp	
SUNAR CELL	DEBRESS, UNSANTTAYLA	When PPE, TAKE TOM	
Job Steps	Y JOGGER (EXAMPLES to help of Hezerols	complete above section)	
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards	
 o scan job site o get required tools/equipment o perform/ complete task o dismantle equipment o clean up job site 	o unfamiliar process system o spill/release o cords, cables, tools o dropping tools o thermal burns	o lockout/ tagout o tie- off o lines drained/purged o shoring o fire extinguisher	
Is housekeeping complete? (res) No	Supervisors Signature:		

SAFETY PARTNERSHIP TA	SC	KEY STEPS
Company: PW MAKAR Employee: JDEL WILLOCK Foreman: JOEL WILLOCK	Date: JULY 2み 2028 Emergency # 9/1 Wind Direction: N W	 Complete card at the job site If in a crew, complete together. Keep the card with the crew
Job Location: ToBER / 10/24 LAGOONS Emergency assembly location: TRUCIC Do you require a permit for your work today? Yes (No) Permit # Special requirements? COUID TEIT (PE Did you sign into the unit?/A Will weather conditions affect your work today?EJ RAIN Is there a heat/cold stress issue today? Yes (No) Humidex Where is the nearest eye wash station?TRUCIC Did you inspect your tools and equipment? (es) No Could your activities impact you or others? Yes (No)		 at all times. 4. If conditions change, the card must be reviewed with the whole crew. 5. Identify Job steps, hazards in your work area, and controls on the back of the card. 6. When job is complete return card to the supervisor. 7. If you have questions, "ASK".
Workers Names:	There mis job r (res) no	
JOEL WILLOCK GREY CHALMER!		

e.

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Describe your task today: SINAR CELL 2 and 2	Did you visually inspect job-site BEFORE STARTING WORK?: fes) No Any issues? DEBRJ, ACCEJS	
Job Steps	Hazards	Controls
Put vessel in water	Ships, Trops, Full	Watch Styp, Use putte
Sunan Lagoun	Debry Unsailing heaten	twatch splanes, clem
Remove Velicl	Injury, Fully	To Reuse equipment
	RY JOGGER (EXAMPLES to help of	
Job Steps	Hazards	ountions
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards
 scan job site get required tools/equipment perform/ complete task 	 o unfamiliar process system o spill/release o cords, cables, tools 	 o lockout/ tagout o tie- off o lines drained/purged
o dismantle equipment o clean up job site	o dropping tools o thermal burns	o shoring o fire extinguisher
Is housekeeping complete? (Yes)/ No	Supervisors Signature:	
Is permit signed off? (Yes) / No	Feedback:	

20

SAFETY PARTNERSHIP TASC		KEY STEPS
Company: PW MAKAN Employee: JOEL WILLOCK Foreman: JUEZ WILLOCK Job Location: TOBER MORY LAGO	Date: JUL 23 2025 Emergency # 9// Wind Direction: SCU Emergency assembly location: TRJC/C	 Complete card at the job site If in a crew, complete together, Keep the card with the crew
Do you require a permit for your work today? Yes (No) Permit # Special requirements? Couso TEXT, PPE		 af all lines 4. If conditions change, the card must be reviewed with the whole crew. 5. identify Job steps, hazards in your work area, and controls on the back of the card. 6. When job is complete return card to the supervisor 7. If you have questions. "ASK".
Did you sign into the unit? Will weather conditions affect your work today? Is there a heat/cold stress issue today? Where is the nearest eye wash station? Truste Did you inspect your loots and equipment? Could your activities impact you or others? Yes (No)		
o tiered work o overhead lifting o hot work o other		It only takes a minute to prevent a lifetime of pain
Are you mentally/ physically prepared t Workers Names:	to complete this job? ((es)No	
JOEZ WILLOCA GREG CHALM		

Describe your task today:	Did you visually inspect job-site BEFORE STARTING WORK?: (Yes) No	
SUNAR CELL 2 ad 2	Any issues? DEBRI, AC	(61)
Job Steps	Hazards	Controls
Invent Veyel into Cell	TAZPI JIM Full	TAKE TIME, Communicate
nove venel 1 Bias No cell.		watch Step, Communicate
sury cell's	Debry, Unsmity Debris	PPE, TRICE TINE
Renare velle (Bust .	TRIP, Nuicle Pully	use Ropey Truck, Reh in Partners
Job Steps	RY JOGGER (EXAMPLES to help of Hazards	
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards
o scan job site	o unfamiliar process system	o lockout/ tagout
o get required tools/equipment	o spill/release	o tie- off
o perform/ complete task	o cords, cables, tools	o lines drained/purged
o dismantle equipment	o dropping tools	o shoring
o clean up job site	o thermal burns	o fire extinguisher
Is housekeeping complete? (Yes) No	Supervisors Signature:	
\sim	Feedback:	
Is permit signed off? (es) No		

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey

Date; July 24, 2020.

Tobermory Wastewater Biosolids Secondary Retention - Cell #2

- Prepared For: Mr. Leo-Paul Frigault Operations Manager Ontario Clean Water Agency West Highlands Hub Wiarton, On
- Prepared By: Paul Makar PW MAKAR INSPECTION SERVICES LTD.

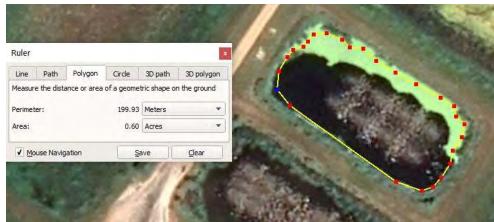
TABLE OF CONTENT

			3-4
			4 4-5
-	.0 ABSTRACT		5
		S DEPTH EVALUATION SITE EVALUATIONS	5-7 7
		UME COMPUTATIONS – Biosolids Sludge	8-9
APPEN	DED FIGU	JRES	10
		SITE MAP LOCATION	11
		SITE AERIAL MAP LOCATION VISUAL REPRESENTATION OF LAGOON SLICED	12 13
LIST OF	PLOTS		
PLOT 1		OON GEOREFERENCING IMAGE AND VESSEL KING LINES	14
PLOT 2	LAGC	OON GEOREFERENCING IMAGE AND SITE DESCIP	TION 15
PLOT 3	LAGO PLOT	OON UPPER BIOSOLIDS SURFACE CONTOUR MAP	16
PLOT 4	-	OON UPPER BIOSOLIDS SURFACE 3D ACE PLOT	17
PLOT 5	LAG	OON SUB-BOTTOM CONTOUR PLOT MAP	18
PLOT 6	LAG	OON SUB-BOTTOM 3D SURFACE PLOT	19
		<u>ORT</u>	20-21
SAFET		IENTATION	
TASC CARDS FOR THE TIME ON-SITE 22-2			22-25

1.0 INTRODUCTION

- 1.1 The Ontario Clean Water Agency contracted PW MAKAR INSPECTION SERVICES LTD. to conduct a Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey of the Tobermory secondary retention wastewater-biosolids Cell #2.
- 1.2 The Tobermory secondary biosolids Cell #2 has an aeration mixing system, which was turned off for a period of 7 days prior to the hydrographic survey. This was to allow the suspended sludge particulate matter to settle and to dissipate any air pockets trapped within the biosolids sludge.
- 1.3 The survey was performed using a multi-frequency (200, 50 and a 12 kHz) acoustic profiling system in the shallow wastewater of the Tobermory Biosolids Cell #2. "Generally", PW MAKAR has a two person survey crew conducting the multi patterns of survey lines. A manned vessel motor operator and safety advisor and a sonar technician, taking sludge samples, calibrating, setting the transduce frequencies and monitoring the raw data streaming from the remote controlled survey vessels onboard computer system to the Toughbook computer system in the manned vessel. The remote controlled survey vessel is attached to the manned vessel as a precaution on wastewater biosolids lagoons/cells due to plant growth and debris on the surface.
 - 1.3.1 The Tobermory Biosolids Cell #2 had an extensive amount of aquatic plant life both on the surface and below the surface so much so it impacted the outboard motor of the manned vessel. To complete the hydrographic survey, PW MAKAR's sonar technician had to manually row the remote controlled survey vessel and manned vessel. Our vessel motor operator and safety advisor was on shore monitoring the events.

1.3.1.1 Figure #1. Remote controlled, unmanned survey vessel, attached to manned vessel, in the Tobermory wastewater-biosolids Cells.


1.4 The precision navigation was provided by the survey vessels on-board GPS system and is incorporated with the acoustic profiling system. Processing of the acoustic data provides both an indication of the present fluid depth and an image of the extent of

biosolids between the fluid bottom (upper biosolids surface contour bathymetric) and the liner/clay bottom (sub-bottom liner/clay contour) of the Tobermory Biosolids Cell #2.

2.0 SITE DESCRIPTION

- 2.1 The Tobermory wastewater treatment works consists of two (2) wastewater retention biosolids Cells, Cell #1 primary treatment and Cell #2 secondary treatment.
 - 2.1.1 Both the Cell #1 and Cell #2 were surveyed at this time. Both Cells will have their own hydrographic reports.
- 2.1 The underwater area surveyed within the Tobermory secondary retention wastewaterbiosolids Cell #2 – survey date; July 24, 2020, has an underwater **Positive Planar Area** of **2458.08 m²** or **0.60 acres** or **0.25 Ha**.
 - 2.1.1.1 **Please note**; the area surveyed within the Tobermory secondary retention wastewater-biosolids Cell #2 is dependent on the water level at the time of the survey. Any obstruction within the lagoon i.e. dykes, aeration systems, rock outcrops above and below the water, aquodic plant life can also affect the size of the survey area.

2.1.2

Figure #2. An area reference qualifier was conducted by a polygon measurement made in Google Earth 7/8/2019 image of the Tobermory Biosolids Cell #2 was found to be approximately 0.60 Acres.¹

2.1.3 The Tobermory Biosolids Cell #2 property is located on the south side of Highway 6, approximately 3.5 kms from the Town of Tobermory, Ontario

3.0 DISCLAIMER

3.1 While PW MAKAR INSPECTION SERVICES LTD believes it has used best practice in obtaining the information contained in this report, in no event will PW MAKAR

¹ Google Earth. 7/8/2019. - Most Current Google Image.

INSPECTION SERVICES LTD be liable for any commercial costs, damages, loss of profit, property damage or personal injury, including death sustained or suffered in connection with the use of data or subsequent processing of materials obtained during field efforts by PW MAKAR INSPECTION SERVICES LTD during this program, or consequential damages including, but not limited to those related to dredging, removal of biosolids, disposal of biosolids, or contamination resulting from use of data obtained from this report or efforts or conclusions drawn from this report.

- 3.2 PW MAKAR INSPECTION SERVICES LTD makes no warranty, either expressed or implied, regarding the suitability or fitness of any data or information contained in this report for a particular purpose or that the information will satisfy the requirement of any law, rule, specification, or contract.
- 3.3 The maximum liability of PW MAKAR INSPECTION SERVICES LTD. from all causes related to this work, field efforts, report or discussions about this effort is limited to the funding received by PW MAKAR INSPECTION SERVICES LTD for this work. Acceptance of this report signifies acceptance of this disclaimer.
- 3.4 This report shall be deemed accepted if no protest is received within 60 days of the issuance date of this report.

4.0 ABSTRACT

- 4.1 The shallow hydrographic underwater acoustic sonar survey was conducted on July 24, 2020, and this report reflects the water content and biosolids sludge levels at the time of this hydrographic survey.
- 4.2 The hydrographic survey was performed by PW MAKAR INSPECTION SERVICES LTD's, Sonar Technician, the survey complies with IHO (International Hydrographic Organization) Standards.
- 4.3 Transducer sound <u>calibration</u> checks were performed prior to the start of the hydrographic survey in the Tobermory Biosolids Cell #2.
- 4.4 Biosolids samples were requested, they were obtain at different locations throughout from Cell #2 and put sample bottles supplied by OCWA.

5.0 BIOSOLIDS DEPTH EVALUATIONS

- 5.1 The sub-bottom contour in the Tobermory Biosolids Cell #2, has a "hard pack" subbottom layer i.e. clay, hard pack soil. All three of our hydrographic acoustic sonar transducers were utilized to determine the bathymetric bottom and sub-bottom in the lagoon.
 - 5.1.1 Biosolids Isopach, volume computations were calculated from the bathymetric (upper surface) biosolids sludge layer using the 200 kHz transducer and the subbottom hard pack layer/liner utilizing both the 50 kHz and 12 kHz transducers.

- 5.1.2 Figure #3. Post processing of the digitized acoustic sonar signal echoes, July 2020, Tobermory Biosolids Cell #2.
- 5.2 The water level elevation was appropriate for conducting a hydrographic survey; extensive aquodic plant life was present within the Tobermory Biosolids Cell #2.
 - 5.2.1 There was adequate access and egress into Cell #2 at the time of the survey.
 - 5.2.2 The total volume of biosolids surveyed on July 24, 2020 in the Tobermory Biosolids Cell #2, is approximately **391.84 m³** or **512.50 yd³**.
 - 5.2.2.1 To calculate a percentage of biosolids sludge, a grid volume computation was calculated from the bathymetric biosolids sludge bottom (defined as the top of the biosolids sludge) and the sub-bottom of the biosolids sludge i.e. the top of the lagoon/cell liner. It is then divided by the grid volume computation calculated from the top of the liquid/water to the sub-bottom of the biosolids sludge of the lagoon/cell liner. The two number sets are then times (x) by 100 to determine a percentage of the biosolids.

Please note; the percentages of biosolids volumes will change/increase if water levels in the lagoon/cell fluctuate. In addition, if aluminum sulfate is added to the water and the suspended organic particles settles to the bottom this will add to the amount of biosolids sludge.

As well; the aeration mixing system was turned off for a period of 6 days prior to the hydrographic survey, there was still suspended organic matter in the water column of Cell #2 which would increase in the total amount of sludge if the suspended organic matter were to completely settle.

5.2.2.1.1 Therefore, on this date the percentage of biosolids buildup in the Tobermory Biosolids Cell #2 is approximately 6.55%.

- 5.2.3 PW MAKAR Inspection Services Ltd. collected **22,570** digitized data value points in the Tobermory Biosolids Cell #2. The digitized data value points represent both the bathymetric bottom and sub-bottom biosolids values with GPS navigational values.
 - 5.2.3.1 Each individual data value point consists of an XYZ value. X value is an Easting coordinate; Y value is a Northing coordinate and Z consists of a biosolids/sludge elevation processed in meters.
 - 5.2.3.2 The average depth of biosolids sludge throughout the Tobermory Biosolids Cell #2 on this date was approximately 0.159 m or 159 mm or 6.25 in.

6.0 GENERAL SITE EVALUATIONS

- 6.1 There is a heavy amount of short vegetation growing around the top of the beam of the wastewater lagoons, which should be monitored and cut back as required if not being allocated already.
- 6.2 There is extensive aquodic plant life was present within the Tobermory Biosolids Cell #2.
- 6.3 There were no apparent berm erosion issues identified at this time.
- 6.4 Lagoon warning signage appeared appropriate.

Reported by: Paul Makar

Paul Makar

PW MAKAR COATINGS INSPECTION LTD. NACE CERTIFIED COATINGS INSPECTOR #137.

Grid Volume Computations

Bathymetric (Upper) Biosolids Surface and Sub-Bottom (Lower) – Liner Surface.

Tobermory secondary retention wastewater-biosolids Cell #2.

Tue Aug 4 15:28:28 2020

Upper Surface

Grid File Name:	C:\A Layer Mapping\CELL 2 A LAYER BLANKED out.grd
Grid Size:	87 rows x 100 columns
X Minimum:	449002.78
X Maximum:	449077.63
X Spacing:	0.75606060606037
Y Minimum:	5009033.35
Y Maximum:	5009098.31
Y Spacing:	0.75534883720887
Z Minimum:	-3.6466769116936
Z Maximum:	-0.33875893332183

Lower Surface

Grid File Name:	C:\ B Layer Mapping\CELL 2 - B LAYER BLANKED out.grd
Grid Size:	87 rows x 100 columns
X Minimum:	449002.78
X Maximum:	449077.63
X Spacing:	0.75606060606037
Y Minimum:	5009033.35
Y Maximum:	5009098.31
Y Spacing:	0.75534883720887
Z Minimum:	-3.6988725333469
Z Maximum:	-0.39013566397471

Volumes

Z Scale Factor:

Total Volumes by:

Trapezoidal Rule:	391.63094297646
Simpson's Rule:	392.01246675622
Simpson's 3/8 Rule:	392.02655423716

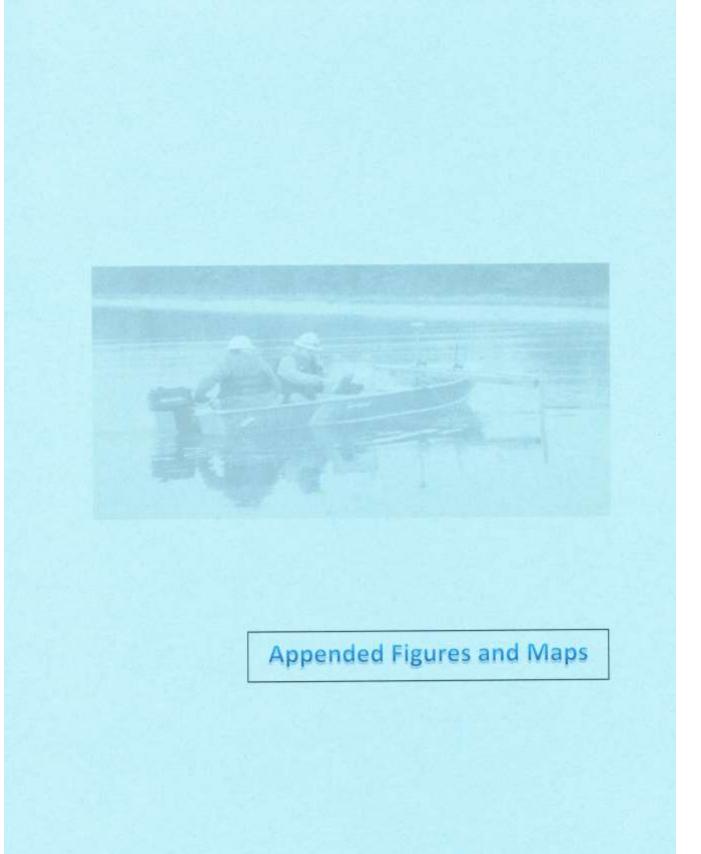
Cut & Fill Volumes

Positive Volume [Cut]:	391.84174219581 m ³ or 512.50 yd ³ .
Negative Volume [Fill]:	0.21079921935185
Net Volume [Cut-Fill]:	391.63094297646

1

Areas

Planar Areas


Positive Planar Area [Cut]: 2458.0876401037 m² or 0.60 acres or 0.25 Ha.

Negative Planar Area [Fill]:	9.0189983719641
No Data Planar Area:	2395.1493615201
Total Planar Area:	4862.2559999957

Surface Areas

Positive Surface Area [Cut]:	2475.0869017594
Negative Surface Area [Fill]:	9.2495263915813

481 Murray Dr. Corunna, ON., N9N 1G0 Servicing the Industrial, Municipal & Commercial Sectors

A

PW MAKAR INSPECTION SERVICES LTD. HAS A LICENCSING AGREEMENT WITH GOOGLE INC. TO REPRODUCE AND PUBLISH THE FOLLOWING IMAGE.NO FURTHER REPRODUCTION OR PUBLISHING OF THIS IMAGE IS PERMITTED UNLESS WRITEN CONSENT FROM PW MAKAR INSPECTION SERVICES LTD.	SITE MAP LOCATION Ontario Clean Water Agency Tobermory, On Tobermory Secondary Wastewater Biosolids Cell #2.
DATE; July 24, 2020	FIGURE No.4

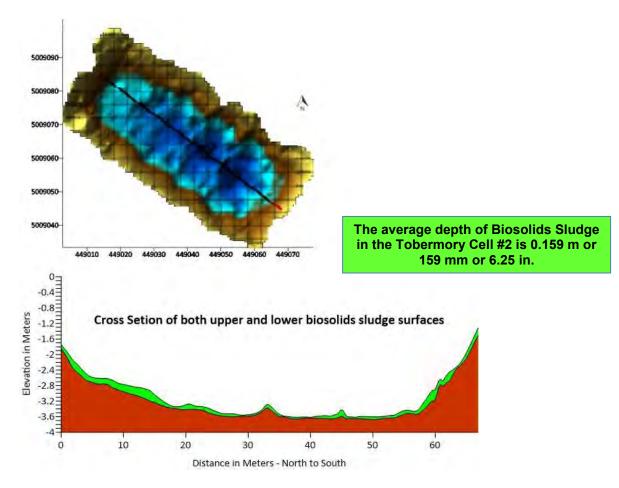
481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

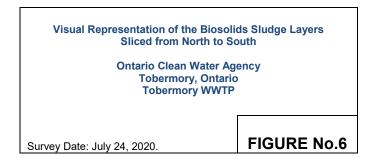
A

PW MAKAR INSPECTION SERVICES LTD. HAS A LICENCSING AGREEMENT WITH GOOGLE INC. TO REPRODUCE AND PUBLISH THE FOLLOWING IMAGE.NO FURTHER REPRODUCTION OR PUBLISHING OF THIS IMAGE IS PERMITTED UNLESS WRITEN CONSENT FROM PW MAKAR INSPECTION SERVICES LTD. SITE AERIAL AP LOCATION

Ontario Clean Water Agency Tobermory, On Tobermory Secondary Wastewater Biosolids Cell #2.

FIGURE No.5

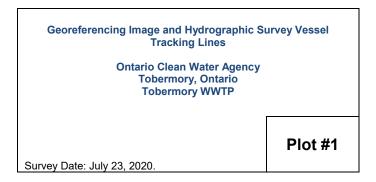

DATE; July 24, 2020


481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

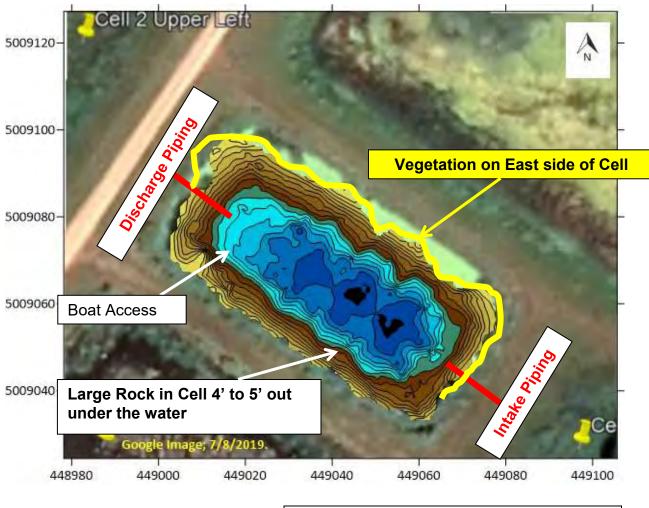
Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Visual Representation of the Biosolids Sludge Layers Sliced from North to South


Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

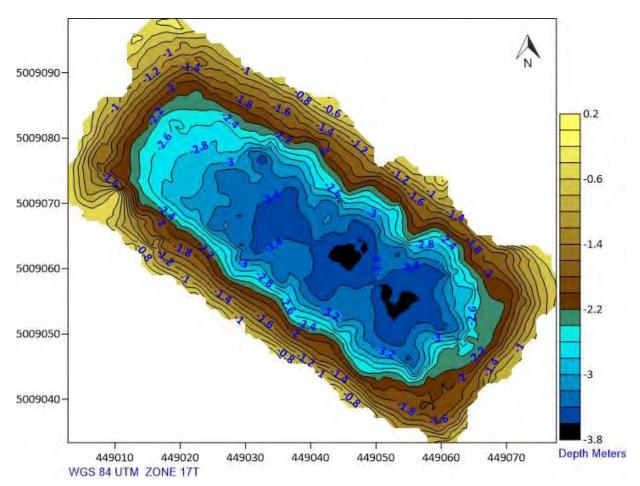
Georeferencing Image and Hydrographic Survey Vessel Tracking Lines

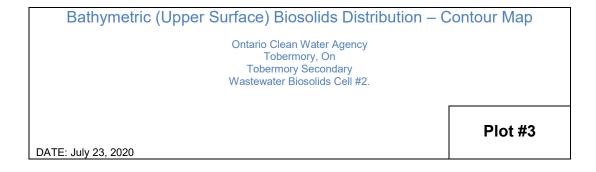

448980 449000 449020 449040 449060 449080 449100

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2. Georeferencing Image – Site Description

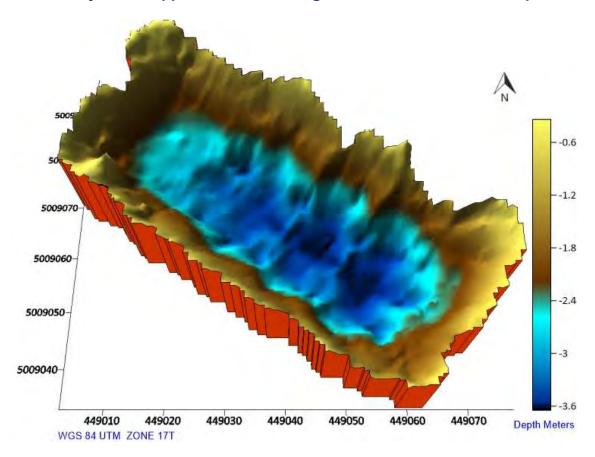


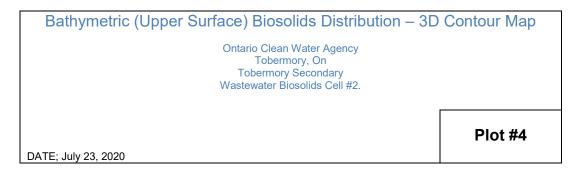

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Bathymetric Upper Biosolids Sludge Surface – Contour Map

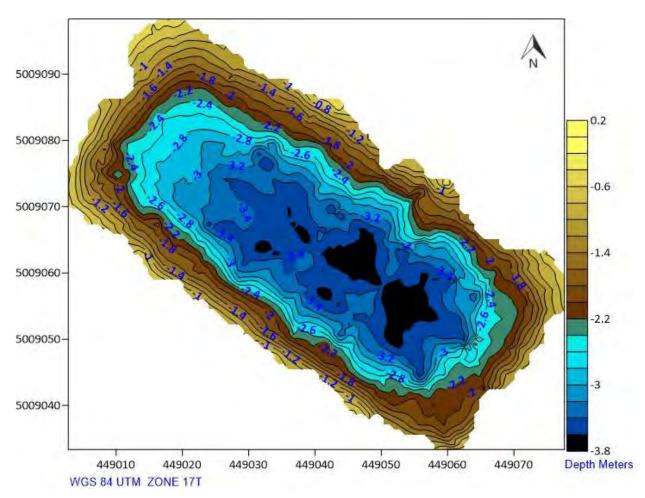


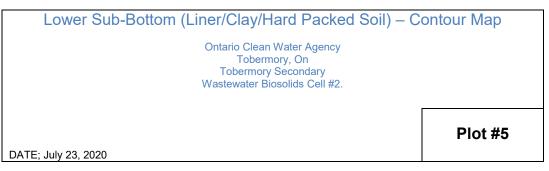

481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Bathymetric Upper Biosolids Sludge Surface – 3D Contour Map

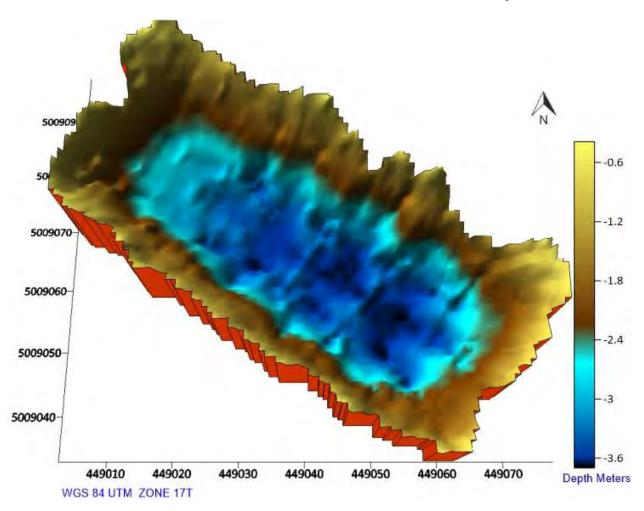



481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Lower Sub-Bottom Liner Surface – Contour Map




481 Murray Dr. Corunna, ON., NON 1G0 Servicing the Industrial, Municipal & Commercial Sectors

Ontario Clean Water Agency Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Lower Sub-Bottom Liner Surface – 3D Contour Map

Ontario Clean Water Agency

Municipality of Northern Bruce Peninsula County of Bruce Tobermory, Ontario

Tobermory Wastewater Biosolids Secondary Retention - Cell #2.

Hydrographic Acoustic Sonar Biosolids Volume Modeling and Distribution Survey

Date; July 24, 2020 PICTORIAL REPORT

Digital image #1 – Tobermory Cell #2. – Aquatic plant life on the surface of Cell 2.

Digital image #2 – Tobermory Cell #2. – Aquatic plant life on the surface of Cell 2.

SAFETY PARTNERSHIP TASC	KEY STEPS
Company: PW MAKAR Date: July 21 2020 Employee: Job Lucation: Job Lucation: Superior Image 1000000000000000000000000000000000000	 Complete card at the job site If in a crew, complete together. Keep the card with the crew
Do you require a permit for your work today? Yes (No) Permit # Special requirements? Couso TらJ+ , PPビ	 at all times. 4. If conditions change, the card must be reviewed with the whole crew. 5. Identify Job steps, hazards in your work area, and controls on the back of the card. 6. When job is complete return card to the supervisor. 7. If you have questions, "ASK".
Did you sign into the unit?/_A Will weather conditions affect your work today?/ Is there a heat/cold stress issue today? Where is the nearest eye wash station? Transfer Did you inspect your tools and equipment? Yes No Could your activities impact you or others? Yes No	
tiered work o overhead lifting o hot work o other Who is your site rep for emergency reporting? Leve PAUL FRIGAULT Did you sign off the permit today? Yes / No	It only takes a <i>minute to</i> prevent a <i>lifetime</i> of pain
Are you mentally/ physically prepared to complete this job? (Yes.) No	
Workers Names: Jolz Withell	

10

Describe your task today: SUNAR COLL 1 al 2	Did you visually inspect job-site BEFO Any issues? DEGRIJ, Ac	ORE STARTING WORK?: (Tes) No
Job Steps	Hazards	Controls
A(CE) LAGand	WILD LEPE	WATCH JEPS and Privily
PUT VENICE / DUAT To CELL	JLIP, TRIP, FALLS	WE Ropes, Roy in Purp
SUNAR CELL	DEBRES , UN SANCTAY LA	THE WEAR PPE, TAKE TOMU
Job Steps	Y JOGGER (EXAMPLES to help of	complete above section)
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards
 o scan job site o get required tools/equipment o perform/ complete task o dismantle equipment o clean up job site 	o unfamiliar process system o spill/release o cords, cables, tools o dropping tools o thermal burns	 o lockout/ tagout o tie- off o lines drained/purged o shoring o fire extinguisher
Is housekeeping complete? (Pes) No	Supervisors Signature:	

Employee: Job Location: Job Location: Job Location: NW Job Location: Taber / 100 UAG00 / 1 Emergency assembly location: NW 3. Kee Job Location: Taber / 100 UAG00 / 1 Emergency assembly location: NU 3. Kee Job Location: Taber / 100 UAG00 / 1 Emergency assembly location: NU 3. Kee Job Location: Taber / 100 UAG00 / 1 Emergency assembly location: NU 3. Kee Job you require a permit for your work today? Yes / No Permit #	Complete card at the job site If in a crew, complete together		Company: PW MAKAR
Foreman: Job Location: Job Location:		Emergency # 9(1	the second se
Job Location: T&BER_AGRY CAGEONS Emergency assembly location: TRUCK at Do you require a permit for your work today? Yes (No) Permit #4. If of 4. If of Special requirements?			
Do you require a permit for your work today? Yes (No) Permit # 4. If of the special requirements? Special requirements?	Keep the card with the crew at all times.	Emergency assembly location: TRUCIC	Job Location: TOBER MORY LAGOONS
Did you sign into the unit? //A 5. Id Will weather conditions affect your work today? YEJ - RAIN 10. Yes Is there a heat/cold stress issue today? Yes No 10. Yes Where is the nearest eye wash station? TRUCC 6. We ca Did you inspect your tools and equipment? Yes / No 7. If yes o tiered work o overhead lifting o hot work o other	If conditions change, the card must be reviewed with the whole crew.	Y? Yes (No) Permit #	Special requirements?
	Identify Job steps, hazards in your work area, and controls of the back of the card. When job is complete return card to the supervisor. If you have questions, "ASK".	s (No Humidex TRUCK	Will weather conditions affect your work to Is there a heat/cold stress issue today? Y Where is the nearest eye wash station? Did you inspect your tools and equipment'
Did you sign off the permit today? Yes / No pre	t only takes a <i>minute t</i> revent a <i>lifetime</i> of pai	9? LED-PAUL FRIGAULT	Who is your site rep for emergency report Did you sign off the permit today? Yes / N
Are you mentally/ physically prepared to complete this job? (Yes) No		mplete this job? (Yes) No	Are you mentally/ physically prepared to c

Describe your task today: SINAR CERL 2 al 2	Did you visually inspect job-site BEFORE STARTING WORK?: (res) No Any issues? DEBREL, ACCELS	
Job Steps	Hazards	Controls
Put vessel in water	Ships, Trips, Full	Watch Styp, Use put
Suran Lagoon	Debry Unsmithing Grater	twatch splackes, clem
Remove Vesicl	Injury, Fally	To Rense equipment,
Job Steps	RY JOGGER (EXAMPLES to help of	complete above section)
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards
o scan job site o get required tools/equipment o perform/ complete task o dismantle equipment o clean up job site	 o unfamiliar process system o spill/release o cords, cables, tools o dropping tools o thermal burns 	o lockout/ tagout o tie- off o lines drained/purged o shoring o fire extinguisher
s housekeeping complete? (Yes)/ No	Supervisors Signature:	
s permit signed off? (Yes) / No	Feedback:	

r

481 Murray Dr. Corunna, ON., N9N 1G0 Servicing the Industrial, Municipal & Commercial Sectors

SAFETY PARTNERSHIP T	ASC	KEY STEPS
Company: PW MAKAR Employee: JOEL WILLOCK Foreman JOEL WILLOCK Job Location: TOBER MORY LAGON N	Date: JUL 23 2020 Emergency # 9// Wind Direction: SCU / Emergency assembly location: TRJC/C	 Complete card at the job site If in a crew, complete together, Keep the card with the crew
Do you require a permit for your work tod: Special requirements? בפטאס דביד, PPE	 af all limes 4. If conditions change, the card must be reviewed with the whole crew. 5. Identify Job steps, hazards in your work area, and controls on the back of the card. 6. When job is complete return card to the supervisor 7. If you have questions. "ASK". 	
Did you sign into the unit? <u>NIA</u> Will weather conditions affect your work today? <u>NO</u> Is there a heat/cold stress issue today? (Yes) No. Humidex <u>36</u> Where is the nearest eye wash station? <u>TRUETC</u> Did you inspect your lools and equipment? (Fis) No Could your activities impact you or others? Yes (No)		
o tiered work o overhead lifting o hot Who is your site rep for emergency report Did you sign off the permit today? Yes / N Are you mentally/ physically prepared to c	Ing? Leo-Paul Frigault	It only takes a <i>minute to</i> prevent a <i>lifetime</i> of pair
Workers Names:		
JOEZ WILLOCK GREG CHALMER	L.K	

Describe your task today:	Did you visually inspect job-site BEFORE STARTING WORK?: (Yes) No	
SUNAR CELL 2 ad 2	Any issues? DEBRI, ACCEIS	
Job Steps	Hazards	Controls
Invent Veyel into Cell	TAIPI JIM, Full	TAKE TIME, Cummunicule
nove venel 1 BiAT N cell.		Watch Step, Compunicate
sury cell's	Debry, Unsmity Debris	PPE, TRICE TINE
Renare velle (Bust .	TRIP, Nuicle Pully	use Roper, Truck, Rely in Partners
Job Steps	RY JOGGER (EXAMPLES to help o Hazards	
Describe steps to reveal hazards	Each step could have many hazards	Control or Eliminate all Hazards
o scan job site	o unfamiliar process system	o lockout/ tagout
o get required tools/equipment	o spill/release	o tie- off
o perform/ complete task	o cords, cables, tools	o lines drained/purged
o dismantle equipment	o dropping tools	o shoring
o clean up job site	o thermal burns	o fire extinguisher
Is housekeeping complete? (Yes) No	Supervisors Signature:	
\sim	Feedback:	